ck_gemm.cpp 17.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <fstream>
25
#include <migraphx/filesystem.hpp>
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/gpu/context.hpp>

#include <migraphx/env.hpp>
#include <migraphx/file_buffer.hpp>
#include <migraphx/gpu/compile_gen.hpp>
#include <migraphx/gpu/compile_hip.hpp>
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/module.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/reduce_dims.hpp>
#include <migraphx/stringutils.hpp>

#include "ck/host/device_gemm_multiple_d.hpp"

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

namespace gpu {

using namespace migraphx::gpu::gen; // NOLINT

MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_LOG_CK_GEMM);
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_CK_TUNING);
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_CK_TUNING_VALUE);
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_CK_DEBUG);
53
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_TUNE_CK);
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

// NOLINTNEXTLINE
static const char* const ck_gemm_kernel = R"__migraphx__(
#include <args.hpp>
#include <migraphx/kernels/ck_gemm.hpp>
#include <migraphx/kernels/pointwise.hpp>
#include <migraphx/kernels/ops.hpp>
#include <${include}>

namespace migraphx {

${preamble}

extern "C" {

Paul Fultz II's avatar
Paul Fultz II committed
69
MIGRAPHX_GLOBAL void ${kernel}(${params})
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
{
    transform_args(make_tensors(), rotate_last())(${args})([](auto... xs) {
        ck_gemm<${solution}, ${blocks_per_batch}>(xs...);
    });
}

}

} // namespace migraphx

)__migraphx__";

// NOLINTNEXTLINE
static const char* const disable_warning_pragma = R"__migraphx__(
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Weverything"
${content}
#pragma clang diagnostic pop
)__migraphx__";

template <class P>
static std::string ck_disable_warnings(P p)
{
    return interpolate_string(disable_warning_pragma,
                              {{"content", std::string{p.first, p.second}}});
}

static std::unordered_map<std::string, std::string> create_ck_header_strings()
{
    std::unordered_map<std::string, std::string> result;
    auto ck_headers = ck::host::GetHeaders();

    std::transform(
        ck_headers.begin(), ck_headers.end(), std::inserter(result, result.begin()), [&](auto&& p) {
            return std::make_pair(p.first, ck_disable_warnings(p.second));
        });
    return result;
}

static std::vector<src_file> create_ck_headers()
{
    static const auto& header_strings = create_ck_header_strings();
    std::vector<src_file> srcs;
    std::transform(
        header_strings.begin(), header_strings.end(), std::back_inserter(srcs), [&](auto&& p) {
            return src_file{fs::path{p.first},
                            {p.second.data(), p.second.data() + p.second.size()}};
        });
    return srcs;
}

static const std::vector<src_file>& ck_headers()
{
    static const auto& headers = create_ck_headers();
    return headers;
}

static bool transposed_matrix(const shape& s) { return s.strides().back() != 1; }

using tuning_entry = std::pair<std::vector<shape>, size_t>;
static std::vector<tuning_entry> read_tuning(const std::string& s)
{
    if(not fs::exists(s))
        return {};
    return from_value<std::vector<tuning_entry>>(from_json_string(read_string(s)));
}

static float matrix_distance(const shape& x, const shape& y)
{
    if(x.type() != y.type())
        return std::numeric_limits<float>::max();
    if(transposed_matrix(x) != transposed_matrix(y))
        return std::numeric_limits<float>::max();
    auto sum_squared = std::inner_product(x.lens().rbegin(),
                                          x.lens().rbegin() + 2,
                                          y.lens().rbegin(),
                                          0,
                                          std::plus<>{},
                                          [](auto a, auto b) { return (a - b) * (a - b); });
    return std::sqrt(sum_squared);
}

static std::size_t get_tuning_for(const std::vector<shape>& inputs)
{
    static auto tuning = read_tuning(string_value_of(MIGRAPHX_CK_TUNING{}, ""));
    if(tuning.empty())
    {
        std::cout << "*********** Warning: No CK tuning! for config:" << std::endl;
        std::cout << "  " << inputs[0] << std::endl;
        std::cout << "  " << inputs[1] << std::endl;
        std::cout << "  " << inputs[2] << std::endl;
    }
    auto it = std::find_if(
        tuning.begin(), tuning.end(), [&](const auto& p) { return p.first == inputs; });
    if(it == tuning.end())
    {
        std::cout << "*********** Warning: CK tuning missing for config!" << std::endl;
        std::cout << "  " << inputs[0] << std::endl;
        std::cout << "  " << inputs[1] << std::endl;
        std::cout << "  " << inputs[2] << std::endl;
        std::vector<std::pair<float, std::size_t>> w;
        std::transform(tuning.begin(), tuning.end(), std::back_inserter(w), [&](const auto& p) {
            if(inputs.size() < 3 or p.first.size() < 3)
                MIGRAPHX_THROW("Invalid CK config");
            auto avg_distance = std::inner_product(
                p.first.begin(),
                p.first.begin() + 3,
                inputs.begin(),
                0.0f,
                std::plus<>{},
                [](const auto& x, const auto& y) { return matrix_distance(x, y) / 3.0f; });
            return std::make_pair(avg_distance, p.second);
        });
        std::sort(w.begin(), w.end());
        std::size_t default_value = 4;
        if(not w.empty())
            default_value = w.front().second;
        auto tuning_val = value_of(MIGRAPHX_CK_TUNING_VALUE{}, default_value);
        std::cout << "*********** Warning: CK try tuning: " << tuning_val << std::endl;
        return tuning_val;
    }
    return it->second;
}

struct ck_gemm_compiler : compiler<ck_gemm_compiler>
{
    static std::string get_layout(const shape& s)
    {
        return transposed_matrix(s) ? "ck::tensor_layout::gemm::ColumnMajor"
                                    : "ck::tensor_layout::gemm::RowMajor";
    }

    static ck::host::DataType get_type(const shape& s)
    {
        if(s.type() == shape::half_type)
            return ck::host::DataType::Half;
        else if(s.type() == shape::float_type)
            return ck::host::DataType::Float;
        else if(s.type() == shape::int8_type)
            return ck::host::DataType::Int8;
        else if(s.type() == shape::int32_type)
            return ck::host::DataType::Int32;
        MIGRAPHX_THROW("Unsupported ck type");
    }

    template <class Iterator, class F>
    static std::string ck_tuple(Iterator start, Iterator last, F f)
    {
        std::vector<std::string> s;
        std::transform(start, last, std::back_inserter(s), f);
        return "ck::Tuple<" + join_strings(s, ",") + ">";
    }

    static std::vector<shape> adjust_inputs(std::vector<shape> inputs, bool& swap_inputs)
    {
        swap_inputs  = false;
        auto c_shape = inputs.back();
        if(not transposed_matrix(c_shape))
            return inputs;
        std::vector<int64_t> perm(c_shape.lens().size());
        std::iota(perm.begin(), perm.end(), 0);
        std::swap(perm[perm.size() - 1], perm[perm.size() - 2]);
        std::transform(inputs.begin(), inputs.end(), inputs.begin(), [&](shape s) {
            return reorder_shape(s, perm);
        });
        swap_inputs = true;
        return inputs;
    }

    static std::size_t get_batch_count(const shape& s)
    {
        return std::accumulate(
            s.lens().rbegin() + 2, s.lens().rend(), std::size_t{1}, std::multiplies<std::size_t>());
    }

    static void fold_batch_dims(shape& s)
    {
        auto lens = s.lens();
        if(lens.size() <= 2)
            return;
        auto batch_count = get_batch_count(s);
        auto m1          = lens.at(lens.size() - 2);
        auto m2          = lens.at(lens.size() - 1);
        if(transposed_matrix(s))
            s = shape{s.type(), {m1, m2 * batch_count}};
        else
            s = shape{s.type(), {m1 * batch_count, m2}};
    }

    static void remove_batch_dims(shape& s)
    {
        auto lens = s.lens();
        if(lens.size() <= 2)
            return;
        auto m1 = lens.at(lens.size() - 2);
        auto m2 = lens.at(lens.size() - 1);
        s       = shape{s.type(), {m1, m2}};
    }

269
    std::vector<std::string> names() const { return {"ck_gemm", "gpu::ck_gemm"}; }
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

    static bool standard_batch(const shape& s)
    {
        if(s.lens().size() < 3)
            return true;
        std::vector<std::size_t> lens(s.lens().begin(), s.lens().end() - 2);
        std::vector<std::size_t> strides(s.strides().begin(), s.strides().end() - 2);
        auto base = *(s.lens().end() - 2) * *(s.lens().end() - 1);
        std::transform(strides.begin(), strides.end(), strides.begin(), [&](auto stride) {
            return stride / base;
        });
        return shape{s.type(), lens, strides}.standard();
    }

    bool can_fold_batch(const std::vector<shape>& inputs) const
    {
        const auto& b_shape = inputs[1];
        if(std::any_of(inputs.begin() + 2, inputs.end() - 1, [](auto input) {
               return not standard_batch(input);
           }))
            return false;
        const auto& b_strides = b_shape.strides();
        return std::all_of(
            b_strides.begin(), b_strides.end() - 2, [](auto stride) { return stride == 0; });
    }

    ck::host::device_gemm_multiple_d::Problem create_problem(const std::vector<shape>& inputs,
                                                             const value& v) const
    {
        const auto& a_shape = inputs[0];
        const auto& b_shape = inputs[1];
        const auto& c_shape = inputs.back();

303
304
        // cppcheck-suppress unreadVariable
        auto rank = a_shape.ndim();
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

        auto batch_count = get_batch_count(c_shape);
        auto m           = c_shape.lens()[rank - 2];
        m                = can_fold_batch(inputs) ? m * batch_count : m;
        auto n           = c_shape.lens().back();
        auto k           = a_shape.lens().back();

        const bool trans_a = transposed_matrix(a_shape);
        const bool trans_b = transposed_matrix(b_shape);
        const bool trans_e = transposed_matrix(c_shape);
        const auto a_type  = get_type(a_shape);
        const auto b_type  = get_type(b_shape);
        const auto e_type  = get_type(c_shape);
        std::vector<bool> ds_layout;
        std::transform(inputs.begin() + 2,
                       inputs.end() - 1,
                       std::back_inserter(ds_layout),
                       [](const auto& i) { return transposed_matrix(i); });
        std::vector<ck::host::DataType> ds_type;
        std::transform(inputs.begin() + 2,
                       inputs.end() - 1,
                       std::back_inserter(ds_type),
                       [](const auto& i) { return get_type(i); });

        std::string ck_passthrough = "ck_passthrough";
        std::string cde_op         = ck_passthrough;
        assert(inputs.size() < 4 or v.contains("post"));
        if(v.contains("post"))
        {
            cde_op = v.at("post").to<std::string>();
        }

        return ck::host::device_gemm_multiple_d::Problem{m,
                                                         n,
                                                         k,
                                                         trans_a,
                                                         trans_b,
                                                         trans_e,
                                                         ds_layout,
                                                         a_type,
                                                         b_type,
                                                         e_type,
                                                         ds_type,
                                                         ck_passthrough,
                                                         ck_passthrough,
                                                         cde_op};
    }

    operation compile_op(context& ctx, const std::vector<shape>& inputs, const value& v) const
    {
        const auto& a_shape = inputs[0];
        const auto& b_shape = inputs[1];
        const auto& c_shape = inputs.back();
        auto tuning_value   = v.get("tuning_value", 4);
        if(not v.contains("tuning_value"))
            tuning_value = get_tuning_for({a_shape, b_shape, c_shape});
        auto batch_count = get_batch_count(c_shape);
        auto problem     = create_problem(inputs, v);

        const auto include_header   = problem.GetIncludeHeader();
        const auto solutions        = problem.GetSolutions(ctx.get_current_device().get_gfx_name());
        const auto& solution        = solutions.at(tuning_value);
        const auto template_str     = solution.template_str;
        const auto blocks_per_batch = solution.grid_size;
        const auto block_size       = solution.block_size;

        hip_compile_options options;
        options.additional_src_files = ck_headers();
        auto grid_size = can_fold_batch(inputs) ? blocks_per_batch : batch_count * blocks_per_batch;
        options.set_launch_params(v, grid_size * block_size, block_size);
        options.inputs         = inputs;
        options.output         = c_shape;
        options.kernel_name    = v.get("kernel", "ck_gemm_kernel");
        options.virtual_inputs = inputs;
        if(can_fold_batch(inputs))
        {
            auto vinputs = inputs;
            fold_batch_dims(vinputs[0]);
            remove_batch_dims(vinputs[1]);
            std::for_each(vinputs.begin() + 2, vinputs.end(), fold_batch_dims);
            options.virtual_inputs = vinputs;
        }

        if(v.get("check", false) or enabled(MIGRAPHX_CK_DEBUG{}))
            options.params += " -DMIGRAPHX_CK_CHECK=1";

        auto src = interpolate_string(ck_gemm_kernel,
                                      {{"solution", template_str},
                                       {"include", include_header},
                                       {"params", enum_params(inputs.size(), "void * private_p")},
                                       {"args", enum_params(inputs.size(), "private_p")},
                                       {"blocks_per_batch", to_string(blocks_per_batch)},
                                       {"preamble", v.get("preamble", std::string{})},
                                       {"kernel", options.kernel_name}});

        return compile_hip_code_object(src, options);
    }

    value create_settings(instruction_ref ins, const operation& op) const
    {
        auto v      = op.to_value();
        v["kernel"] = "ck_gemm_kernel";
        if(not ins->module_inputs().empty())
        {
            auto* pm      = ins->module_inputs().front();
            v["preamble"] = generate_pointwise(*pm, "post_ck_gemm_function") +
                            "\nMIGRAPHX_LIFT_CLASS(post_ck_gemm, post_ck_gemm_function);";
            v["post"]   = "ck_function_adaptor<post_ck_gemm>";
            v["kernel"] = "ck_gemm_" + generate_name_from_ops(*pm) + "_kernel";
        }
        return v;
    }

    compiler_replace
    compile(context& ctx, instruction_ref ins, const operation& op, const value& solution) const
    {
        auto shapes = to_shapes(ins->inputs());
        auto v      = create_settings(ins, op);
423
        if(not solution.is_null())
424
425
426
427
428
429
430
            v["tuning_value"] = solution;
        return {compile_op(ctx, shapes, v),
                [=](module& m, instruction_ref ins2, const operation& code_object) {
                    if(enabled(MIGRAPHX_LOG_CK_GEMM{}))
                    {
                        std::vector<shape> gemm_shapes{
                            shapes[0], shapes[1], shapes.back().with_type(shapes[0].type())};
431
                        std::cout << "gpu::ck_gemm: " << to_json_string(to_value(gemm_shapes))
432
433
434
435
436
437
438
                                  << std::endl;
                    }
                    m.replace_instruction(ins2, code_object, ins2->inputs());
                }};
    }

    optional<tuning_config>
439
    get_tuning_config(context& ctx, instruction_ref ins, const operation& op, bool exhaustive) const
440
    {
441
442
        if(not exhaustive and not enabled(MIGRAPHX_TUNE_CK{}))
            return nullopt;
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
        tuning_config tc;
        auto shapes    = to_shapes(ins->inputs());
        auto problem   = create_problem(shapes, create_settings(ins, op));
        auto solutions = problem.GetSolutions(ctx.get_current_device().get_gfx_name());
        tc.solutions.resize(solutions.size());
        std::iota(tc.solutions.begin(), tc.solutions.end(), 0);
        std::vector<shape> gemm_shapes{shapes[0], shapes[1], shapes.back()};
        tc.problem = to_value(gemm_shapes);
        return tc;
    }
};

} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx