topk.cpp 7.21 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
Shucai Xiao's avatar
Shucai Xiao committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#include <migraphx/shape.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/gpu/device/topk.hpp>
#include <migraphx/gpu/device/tensor.hpp>
#include <migraphx/gpu/device/launch.hpp>
#include <migraphx/gpu/device/types.hpp>
#include <migraphx/gpu/device/visit.hpp>
#include <migraphx/ranges.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace device {

template <class T, class Index, class Compare>
struct hip_heap_vector
{
    MIGRAPHX_DEVICE_CONSTEXPR hip_heap_vector(T* val, index_int n, Index v_idx, Compare comp)
        : data(val), size(n), data_index(v_idx), compare(comp)
    {
        make_heap(size);
    }

    MIGRAPHX_DEVICE_CONSTEXPR void try_push(const T val)
    {
        if(compare(val, data[data_index(0)]))
            return;

        pop_heap(size - 1);
        data[data_index(size - 1)] = val;
        push_heap(size - 1);
    }

    MIGRAPHX_DEVICE_CONSTEXPR void sort() { sort_heap(size); }

    private:
    MIGRAPHX_DEVICE_CONSTEXPR inline static void swap(T& v1, T& v2)
    {
        T v = v1;
        v1  = v2;
        v2  = v;
    }

    MIGRAPHX_DEVICE_CONSTEXPR inline void heapify_down(index_int n, index_int index)
    {
        while(index < n)
        {
            auto pre_index = index;
            index_int l    = 2 * index + 1;
            index_int r    = 2 * index + 2;

75
            if(l < n and compare(data[data_index(l)], data[data_index(index)]))
Shucai Xiao's avatar
Shucai Xiao committed
76
77
78
79
            {
                index = l;
            }

80
            if(r < n and compare(data[data_index(r)], data[data_index(index)]))
Shucai Xiao's avatar
Shucai Xiao committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
            {
                index = r;
                if(compare(data[data_index(l)], data[data_index(r)]))
                {
                    index = l;
                }
            }

            if(index == pre_index)
            {
                break;
            }

            swap(data[data_index(index)], data[data_index(pre_index)]);
        }
    }

    MIGRAPHX_DEVICE_CONSTEXPR inline void heapify_up(index_int index)
    {
        while(index > 0)
        {
            auto parent_idx = (index - 1) / 2;

            if(not compare(data[data_index(index)], data[data_index(parent_idx)]))
            {
                break;
            }

            swap(data[data_index(index)], data[data_index(parent_idx)]);
            index = parent_idx;
        }
    }

    MIGRAPHX_DEVICE_CONSTEXPR inline void make_heap(index_int n)
    {
        for(int j = n / 2 - 1; j >= 0; --j)
        {
            heapify_down(n, j);
        }
    }

    MIGRAPHX_DEVICE_CONSTEXPR inline void push_heap(index_int loc) { heapify_up(loc); }

    MIGRAPHX_DEVICE_CONSTEXPR inline void pop_heap(index_int loc)
    {
        swap(data[data_index(0)], data[data_index(loc)]);
        heapify_down(loc, 0);
    }

    MIGRAPHX_DEVICE_CONSTEXPR inline void sort_heap(index_int n)
    {
        for(int j = n - 1; j > 0; --j)
        {
            swap(data[data_index(0)], data[data_index(j)]);
            heapify_down(j, 0);
        }
    }

    T* data = nullptr;
    index_int size;
    Index data_index;
    Compare compare;
};

template <class T, class Index, class Compare>
__device__ hip_heap_vector<T, Index, Compare>
make_heap(T* data, index_int n, Index idx, Compare compare)
{
    return {data, n, idx, compare};
}

template <class Compare>
std::vector<argument> topk(hipStream_t stream,
                           const argument& val_res,
                           const argument& ind_res,
                           const argument& arg,
                           int64_t k,
                           int64_t axis,
                           Compare compare)
{
    auto in_s       = arg.get_shape();
    auto in_lens    = in_s.lens();
    auto out_s      = val_res.get_shape();
    auto axis_dim   = in_s.lens()[axis];
    auto comp_lens  = in_lens;
    comp_lens[axis] = 1;
    shape comp_s{in_s.type(), comp_lens};
    std::size_t elem_num = comp_s.elements();

    hip_visit_all(val_res, arg, out_s, in_s, comp_s)(
        [&](auto out_val, auto input, auto oss, auto iss, auto css) {
            auto* data      = device_cast(input.data());
            auto* out       = device_cast(out_val.data());
            auto* const ind = ind_res.cast<int64_t>();
            gs_launch(stream, elem_num)([=](auto i) __device__ {
                auto idx = css.multi(i);

                auto in_idx = [&](int ii) {
                    auto iidx  = idx;
                    iidx[axis] = ii;
                    return iss.index(iidx);
                };

                auto out_idx = [&](int ii) {
                    auto iidx  = idx;
                    iidx[axis] = ii;
                    return oss.index(iidx);
                };

                auto data_compare = [=](auto ii, auto jj) {
                    return compare(data[in_idx(ii)], data[in_idx(jj)]);
                };

                for(int j = 0; j < k; ++j)
                {
                    ind[out_idx(j)] = j;
                }

                auto hp = make_heap(ind, k, out_idx, data_compare);
                for(int j = k; j < axis_dim; ++j)
                {
                    hp.try_push(j);
                }
                hp.sort();

                for(int j = 0; j < k; ++j)
                {
                    out[out_idx(j)] = data[in_idx(ind[out_idx(j)])];
                }
            });
        });

    return {val_res, ind_res};
}

argument topk_largest(hipStream_t stream,
                      const argument& val_res,
                      const argument& ind_res,
                      const argument& arg,
                      int64_t k,
                      int64_t axis)
{
    return {topk(stream, val_res, ind_res, arg, k, axis, std::less<>{})};
}

argument topk_smallest(hipStream_t stream,
                       const argument& val_res,
                       const argument& ind_res,
                       const argument& arg,
                       int64_t k,
                       int64_t axis)
{
    return {topk(stream, val_res, ind_res, arg, k, axis, std::greater<>{})};
}

} // namespace device
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx