dnnl.cpp 4.02 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#include <migraphx/cpu/dnnl.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace cpu {

dnnl_context& get_dnnl_context()
{
    static dnnl_context ctx{}; // NOLINT
    return ctx;
}

#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wswitch-enum"
#endif
dnnl::memory::data_type to_dnnl_memory_data_type(shape::type_t t)
{
    using dt = dnnl::memory::data_type;
    using st = shape::type_t;
    switch(t)
    {
    case st::half_type: return dt::f16;
    case st::float_type: return dt::f32;
    case st::int32_type: return dt::s32;
    case st::int8_type: return dt::s8;
    case st::uint8_type: return dt::u8;
    default: MIGRAPHX_THROW("Unsupported data type");
    }
}
#ifdef __clang__
#pragma clang diagnostic pop
#endif

dnnl::memory::format_tag to_dnnl_memory_format_tag(std::size_t n)
{
    switch(n)
    {
    case 1: return dnnl::memory::format_tag::a;
    case 2: return dnnl::memory::format_tag::ab;
    case 3: return dnnl::memory::format_tag::abc;
    case 4: return dnnl::memory::format_tag::abcd;
    case 5: return dnnl::memory::format_tag::abcde;
    case 6: return dnnl::memory::format_tag::abcdef;
    default: MIGRAPHX_THROW("Unsupported tensor size: " + std::to_string(n));
    }
}

dnnl::memory::desc to_dnnl_memory_desc(const shape& s)
{
    return {to_dnnl_dims(s.lens()), to_dnnl_memory_data_type(s.type()), to_dnnl_dims(s.strides())};
}

dnnl::memory to_dnnl_memory(const dnnl::memory::desc& desc, const argument& a)
{
    return dnnl::memory(desc, get_dnnl_context().engine, a.data());
}

dnnl::memory to_dnnl_memory(const argument& a)
{
    return to_dnnl_memory(to_dnnl_memory_desc(a.get_shape()), a);
}

// clang-format off
#define MIGRAPHX_VISIT_DNNL_ALGO(m) \
        m(undef) \
        m(convolution_auto) \
        m(convolution_direct) \
        m(convolution_winograd) \
        m(deconvolution_direct) \
        m(deconvolution_winograd) \
        m(eltwise_relu) \
        m(eltwise_tanh) \
        m(eltwise_elu) \
        m(eltwise_square) \
        m(eltwise_abs) \
        m(eltwise_sqrt) \
        m(eltwise_swish) \
        m(eltwise_linear) \
        m(eltwise_bounded_relu) \
        m(eltwise_soft_relu) \
        m(eltwise_logistic) \
        m(eltwise_exp) \
        m(eltwise_gelu) \
        m(eltwise_gelu_tanh) \
        m(eltwise_gelu_erf) \
        m(eltwise_log) \
        m(eltwise_clip) \
        m(eltwise_pow) \
        m(eltwise_round) \
        m(eltwise_relu_use_dst_for_bwd) \
        m(eltwise_tanh_use_dst_for_bwd) \
        m(eltwise_elu_use_dst_for_bwd) \
        m(eltwise_sqrt_use_dst_for_bwd) \
        m(eltwise_logistic_use_dst_for_bwd) \
        m(eltwise_exp_use_dst_for_bwd) \
        m(lrn_across_channels) \
        m(lrn_within_channel) \
        m(pooling_max) \
        m(pooling_avg) \
        m(pooling_avg_include_padding) \
        m(pooling_avg_exclude_padding) \
        m(vanilla_rnn) \
        m(vanilla_lstm) \
        m(vanilla_gru) \
        m(lbr_gru) \
        m(binary_add) \
        m(binary_mul) \
        m(binary_max) \
        m(binary_min) \
        m(binary_div) \
        m(resampling_nearest) \
        m(resampling_linear) \
        m(reduction_max) \
        m(reduction_min) \
        m(reduction_sum) \
        m(reduction_mul) \
        m(reduction_mean) \
        m(reduction_norm_lp_max) \
        m(reduction_norm_lp_sum) \
        m(reduction_norm_lp_power_p_max) \
        m(reduction_norm_lp_power_p_sum)
// clang-format on

const std::unordered_map<std::string, dnnl::algorithm>& dnnl_algo_map()
{
    static const std::unordered_map<std::string, dnnl::algorithm> m = {
#define MIGRAPHX_DNNL_ALGO_GENERATE_VISITOR(x) {#x, dnnl::algorithm::x},
        MIGRAPHX_VISIT_DNNL_ALGO(MIGRAPHX_DNNL_ALGO_GENERATE_VISITOR)
#undef MIGRAPHX_DNNL_ALGO_GENERATE_VISITOR
    };
    return m;
}

dnnl::algorithm to_dnnl_algo(const std::string& name)
{
    if(dnnl_algo_map().count(name) == 0)
        MIGRAPHX_THROW("Missing dnnl algo: " + name);
    return dnnl_algo_map().at(name);
}

} // namespace cpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx