normalize_attributes.cpp 6.45 KB
Newer Older
Shucai Xiao's avatar
Shucai Xiao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#include <migraphx/operation.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/normalize_attributes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/op/normalize_attribute.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

// different attributes
// 1) use_input(default)/use_output
// 2) use_rank(default)/use_len
// 3) clip_min(default)/not_clip_min
//   3.1) include_min(default)/exclude_min
// 4) clip_max(default)/not_clip_max
//   4.1) exclude_max(default)/include_max
auto tune_attribute(const std::vector<int64_t>& vec,
                    const std::vector<int64_t>& axes,
                    const value& val,
                    const std::vector<std::size_t>& lens)
{
    std::vector<int64_t> result(vec);
Paul Fultz II's avatar
Paul Fultz II committed
23
    int64_t n_rank                                 = lens.size();
Shucai Xiao's avatar
Shucai Xiao committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    std::vector<op::normalize_attribute> vec_attrs = val.to_vector<op::normalize_attribute>();
    if(contains(vec_attrs, op::normalize_attribute::use_output))
    {
        n_rank = n_rank + vec.size();
    }

    std::vector<int64_t> max_vals(vec.size(), n_rank);
    if(contains(vec_attrs, op::normalize_attribute::use_len))
    {
        std::transform(axes.begin(), axes.end(), max_vals.begin(), [&](auto i) { return lens[i]; });
    }

    if(contains(vec_attrs, op::normalize_attribute::clip_max))
    {
        if(contains(vec_attrs, op::normalize_attribute::include_max))
        {
            std::transform(result.begin(),
                           result.end(),
                           max_vals.begin(),
                           result.begin(),
                           [](auto v, auto mv) { return v > mv ? mv : v; });
        }
        else
        {
            std::transform(result.begin(),
                           result.end(),
                           max_vals.begin(),
                           result.begin(),
                           [](auto v, auto mv) { return v >= mv ? mv - 1 : v; });
        }
    }
    else
    {
        if(contains(vec_attrs, op::normalize_attribute::include_max))
        {
            if(!std::equal(result.begin(), result.end(), max_vals.begin(), std::less_equal<>{}))
            {
                MIGRAPHX_THROW("TUNE_VECTOR: value out of range!");
            }
        }
        else
        {
            if(!std::equal(result.begin(), result.end(), max_vals.begin(), std::less<>{}))
            {
                MIGRAPHX_THROW("TUNE_VECTOR: value out of range!");
            }
        }
    }

    std::vector<int64_t> min_vals = max_vals;
    std::transform(min_vals.begin(), min_vals.end(), min_vals.begin(), [](auto v) { return -v; });
    if(contains(vec_attrs, op::normalize_attribute::clip_min))
    {
        if(contains(vec_attrs, op::normalize_attribute::include_min))
        {
            std::transform(result.begin(),
                           result.end(),
                           min_vals.begin(),
                           result.begin(),
                           [](auto v, auto mv) { return v < mv ? mv : v; });
        }
        else
        {
            std::transform(result.begin(),
                           result.end(),
                           min_vals.begin(),
                           result.begin(),
                           [](auto v, auto mv) { return v < mv + 1 ? mv + 1 : v; });
        }
    }
    else
    {
        if(contains(vec_attrs, op::normalize_attribute::include_min))
        {
            if(!std::equal(min_vals.begin(), min_vals.end(), result.begin(), std::less_equal<>{}))
            {
                MIGRAPHX_THROW("TUNE_VECTOR: attribute out of range!");
            }
        }
        else
        {
            if(!std::equal(result.begin(), result.end(), min_vals.begin(), std::less<>{}))
            {
                MIGRAPHX_THROW("TUNE_VECTOR: attribute out of range!");
            }
        }
    }

    std::transform(
        result.begin(), result.end(), max_vals.begin(), result.begin(), [](auto v, auto mv) {
            return v < 0 ? v + mv : v;
        });

    return result;
}

kahmed10's avatar
kahmed10 committed
120
121
122
123
124
125
126
127
128
129
auto tune_pad_attribute(const value& val)
{

    std::vector<size_t> vec_attrs = val.to_vector<size_t>();
    std::vector<size_t> result(vec_attrs.begin(), vec_attrs.end());
    std::copy(vec_attrs.begin(), vec_attrs.end(), std::back_inserter(result));

    return result;
}

Shucai Xiao's avatar
Shucai Xiao committed
130
131
132
133
134
bool normalize_attributes(operation& op, const std::vector<std::size_t>& lens)
{
    bool tuned = false;
    auto attrs = op.attributes();
    auto val   = op.to_value();
kahmed10's avatar
kahmed10 committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    if(attrs.contains("normalize_padding"))
    {
        auto padding      = val.at(attrs.at("normalize_padding").to<std::string>());
        auto padding_size = padding.size();
        // for now, assume the dimensions to pad start at dim 2
        auto padding_start = 2;

        if(padding_size == 2 * (lens.size() - padding_start))
            tuned = true;
        else if(padding_size != (lens.size() - padding_start))
            MIGRAPHX_THROW("inconsistent padding size");
        else
        {
            auto result    = tune_pad_attribute(padding);
            val["padding"] = result;
            op.from_value(val);
            tuned = true;
        }
    }
Shucai Xiao's avatar
Shucai Xiao committed
154
155
    if(!attrs.contains("normalize_axes"))
    {
kahmed10's avatar
kahmed10 committed
156
        return tuned;
Shucai Xiao's avatar
Shucai Xiao committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    }

    auto attr_v = attrs.at("normalize_axes").without_key();
    for(const auto& rv : attr_v)
    {
        const auto& key = rv.get_key();
        if(val.contains(key))
        {
            auto vv = val.at(key).without_key();
            if(vv.is_array())
            {
                std::vector<int64_t> axes;
                if(val.contains("axes"))
                {
                    axes = val.at("axes").without_key().to_vector<int64_t>();
                }
                auto vec    = vv.to_vector<int64_t>();
                auto result = tune_attribute(vec, axes, rv.without_key(), lens);
                val[key]    = result;
                op.from_value(val);
                val   = op.to_value();
                tuned = true;
            }
            else
            {
                auto num    = vv.to<int64_t>();
                auto result = tune_attribute({num}, {num}, rv.without_key(), lens);
                val[key]    = result.front();
                op.from_value(val);
                val   = op.to_value();
                tuned = true;
            }
        }
        else
        {
            MIGRAPHX_THROW("NORMALIZE_ATTR : op " + op.name() + " attribute \"" + key +
                           "\" not exist!");
        }
    }

    return tuned;
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx