pad_calc.cpp 6.07 KB
Newer Older
1
2
3
/*
 * The MIT License (MIT)
 *
Brian Pickrell's avatar
Brian Pickrell committed
4
 * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <migraphx/pad_calc.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

void calculate_padding(int64_t idx,
                       std::vector<int64_t>& pads,
                       int64_t input_dim,
                       int64_t stride,
                       int64_t dilation,
                       int64_t weight_dim,
                       bool is_same_upper)
{
    int64_t output_dim     = (input_dim + stride - 1) / stride; // round up result
    int64_t new_weight_dim = weight_dim + (weight_dim - 1) * (dilation - 1);
    int64_t pad =
        std::max(static_cast<int64_t>(0), (output_dim - 1) * stride + new_weight_dim - input_dim);
    auto pad_ndims = pads.size() / 2;

    if(is_same_upper)
    {
        pads[idx]             = pad / 2;
        pads[idx + pad_ndims] = pad - pad / 2;
    }
    else
    {
        pads[idx + pad_ndims] = pad / 2;
        pads[idx]             = pad - pad / 2;
    }
}

Brian Pickrell's avatar
Brian Pickrell committed
55
56
57
58
59
/**
 * Given the input array dimensions; kernel (wei_lens); strides; and dilations,
 * calculate the padding value in each dimension.
 *
 */
60
61
62
63
std::vector<std::size_t> calc_dyn_auto_pad(const std::vector<std::size_t>& input_lens,
                                           const std::vector<std::size_t>& wei_lens,
                                           const std::vector<std::size_t>& strides,
                                           const std::vector<std::size_t>& dilations,
64
65
66
                                           bool use_upper)
{
    std::vector<std::size_t> padding;
67
    assert(input_lens.size() >= 3);
Brian Pickrell's avatar
Brian Pickrell committed
68
    assert(input_lens.size() == wei_lens.size());
69
70
71
    std::size_t num_spatial_dims = input_lens.size() - 2;
    padding.resize(2 * num_spatial_dims);
    for(std::size_t i = 0; i < num_spatial_dims; i++)
72
    {
73
        std::ptrdiff_t input_dim      = input_lens[i + 2];
74
        std::ptrdiff_t stride         = strides[i];
75
        std::ptrdiff_t weight_dim     = wei_lens[i + 2];
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
        std::ptrdiff_t dilation       = dilations[i];
        std::ptrdiff_t output_dim     = (input_dim + stride - 1) / stride; // round up result
        std::ptrdiff_t new_weight_dim = weight_dim + (weight_dim - 1) * (dilation - 1);
        std::size_t pad               = std::max(static_cast<std::ptrdiff_t>(0),
                                   (output_dim - 1) * stride + new_weight_dim - input_dim);
        auto pad_ndims                = padding.size() / 2;

        if(use_upper)
        {
            padding[i]             = pad / 2;
            padding[i + pad_ndims] = pad - pad / 2;
        }
        else
        {
            padding[i + pad_ndims] = pad / 2;
            padding[i]             = pad - pad / 2;
        }
    }
    return padding;
}

Brian Pickrell's avatar
Brian Pickrell committed
97
98
99
100
101
/**
 *   Calculate the correct output shape for a convolution with
 *   a given input size and other parameters.
 *
 */
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
shape compute_padded_shape(const shape& input,
                           const shape& weights,
                           const std::vector<std::size_t>& padding,
                           const std::vector<std::size_t>& stride,
                           const std::vector<std::size_t>& dilation)
{
    const size_t num_spatial_dims = input.lens().size() - 2;

    std::vector<size_t> output_lens{input.lens()[0], weights.lens()[0]};
    // calculate the output shape of the convolution: ((W - K + 2P) / S) + 1
    for(size_t i = 0; i < num_spatial_dims; ++i)
    {
        auto padding_factor = padding[i] + padding[i + num_spatial_dims];
        output_lens.push_back(std::size_t(std::max<std::ptrdiff_t>(
            1,
            (input.lens()[i + 2] - (1 + dilation[i] * (weights.lens()[i + 2] - 1)) +
             padding_factor) /
                    stride[i] +
                1)));
    }
    return input.with_lens(output_lens);
}

Brian Pickrell's avatar
Brian Pickrell committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
/**
 *   Calculate the correct output shape for a pooling with
 *   a given input size and other parameters.  This uses
 *   the same formula for pooling that compute_padded_shape() uses
 *   for convolutions, but takes slightly different inputs.
 *
 */
shape compute_padded_pool_shape(const shape& input,
                                const shape& kernel,
                                const std::vector<std::size_t>& padding,
                                const std::vector<std::size_t>& stride,
                                const std::vector<std::size_t>& dilation)
{
    const size_t num_spatial_dims = input.lens().size() - 2;

    std::vector<size_t> output_lens{input.lens()[0], input.lens()[1]};
    // calculate the output shape of the pooling: ((W - K + 2P) / S) + 1
    for(size_t i = 0; i < num_spatial_dims; ++i)
    {
        auto padding_factor = padding[i] + padding[i + num_spatial_dims];
        output_lens.push_back(std::size_t(std::max<std::ptrdiff_t>(
            1,
            (input.lens()[i + 2] - (1 + dilation[i] * (kernel.lens()[i] - 1)) + padding_factor) /
                    stride[i] +
                1)));
    }
    return input.with_lens(output_lens);
}
153
154
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx