simplify_reshapes.cpp 29.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
24
#include <iterator>
Paul's avatar
Paul committed
25
26
27
#include <migraphx/simplify_reshapes.hpp>
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
28
#include <migraphx/op/as_shape.hpp>
29
#include <migraphx/op/transpose.hpp>
Paul's avatar
Paul committed
30
#include <migraphx/op/concat.hpp>
31
#include <migraphx/op/slice.hpp>
Paul's avatar
Paul committed
32
33
#include <migraphx/iterator_for.hpp>
#include <migraphx/ranges.hpp>
Paul's avatar
Paul committed
34
#include <migraphx/matcher.hpp>
35
#include <migraphx/permutation.hpp>
36
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
37
#include <unordered_set>
38
#include <migraphx/make_op.hpp>
39
#include <migraphx/tune_axis.hpp>
40

41
#include <map>
Paul's avatar
Paul committed
42

Paul's avatar
Paul committed
43
namespace migraphx {
Paul's avatar
Paul committed
44
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
45

Paul's avatar
Paul committed
46
const auto& reshaper_names()
Paul's avatar
Paul committed
47
{
48
49
    // clang-format off
    static const std::unordered_set<std::string> names = {
50
        "flatten",
51
        "reshape",
52
53
        "squeeze",
        "unsqueeze"
54
55
    };
    // clang-format on
Paul's avatar
Paul committed
56
    return names;
Paul's avatar
Paul committed
57
58
}

Paul's avatar
Paul committed
59
bool is_reshaper(instruction_ref ins) { return contains(reshaper_names(), ins->name()); }
Paul's avatar
Paul committed
60
61
62

instruction_ref find_transpose_input(instruction_ref ins)
{
Paul's avatar
Paul committed
63
    if(ins->inputs().size() != 1)
Paul's avatar
Paul committed
64
        return ins;
Paul's avatar
Paul committed
65
    if(ins->inputs().front()->name() == "contiguous")
Paul's avatar
Paul committed
66
67
68
69
        return find_transpose_input(ins->inputs().front());
    if(ins->inputs().front()->name() == "transpose")
        return ins->inputs().front();
    return ins;
Paul's avatar
Paul committed
70
71
}

72
73
74
75
76
77
78
auto get_transpose_dims(instruction_ref ins)
{
    return any_cast<const op::transpose&>(ins->get_operator()).dims;
}

bool is_no_transpose(const std::vector<int64_t>& dims)
{
Paul's avatar
Paul committed
79
    if(dims.empty())
80
        return true;
Paul's avatar
Paul committed
81
    if(dims.front() != 0)
82
        return false;
Paul's avatar
Paul committed
83
84
    return std::adjacent_find(
               dims.begin(), dims.end(), [](auto x, auto y) { return (y - x) != 1; }) == dims.end();
85
86
}

Paul's avatar
Paul committed
87
struct find_reshaper
Paul's avatar
Paul committed
88
{
Paul's avatar
Paul committed
89
    auto matcher() const
Paul's avatar
Paul committed
90
    {
Paul's avatar
Paul committed
91
92
93
94
        auto no_output_reshape = match::none_of[match::outputs()](match::name(reshaper_names()));
        auto input_reshape = match::arg(0)(match::skip(match::name("contiguous"))(match::name(reshaper_names())));
        auto input = match::skip(match::name(reshaper_names()), match::name("contiguous"))(match::arg(0).bind("x"));
        return match::name(reshaper_names())(no_output_reshape, input_reshape, input);
Paul's avatar
Paul committed
95
96
    }

97
    void apply(module& m, const match::matcher_result& mr) const
Paul's avatar
Paul committed
98
99
    {
        auto ins = mr.result;
Paul's avatar
Paul committed
100
101
        auto input = mr.instructions["x"];
        auto dims = ins->get_shape().lens();
Paul's avatar
Paul committed
102

Paul's avatar
Paul committed
103
104
105
        if (not input->get_shape().standard())
            input = m.insert_instruction(input, make_op("contiguous"), input);
        m.replace_instruction(ins, make_op("reshape", {{"dims", dims}}), input);
Paul's avatar
Paul committed
106
107
108
    }
};

Paul's avatar
Paul committed
109
110
111
112
113
struct find_nop_reshapes
{
    auto matcher() const
    {
        auto reshapes = reshaper_names();
114
115
116
        reshapes.insert("as_shape");
        reshapes.insert("broadcast");
        reshapes.insert("concat");
Paul Fultz II's avatar
Paul Fultz II committed
117
        reshapes.insert("convert");
118
119
        reshapes.insert("multibroadcast");
        reshapes.insert("pad");
Paul's avatar
Paul committed
120
        reshapes.insert("slice");
121
        reshapes.insert("transpose");
Paul's avatar
Paul committed
122
        return match::name(reshapes)(match::same_shape(match::arg(0)));
Paul's avatar
Paul committed
123
124
    }

125
    void apply(module& m, const match::matcher_result& mr) const
Paul's avatar
Paul committed
126
127
    {
        auto ins = mr.result;
128
        m.replace_instruction(ins, ins->inputs().front());
Paul's avatar
Paul committed
129
130
131
    }
};

Paul's avatar
Paul committed
132
133
134
135
struct find_transpose
{
    auto matcher() const
    {
136
137
138
139
140
        auto output_not_transpose =
            match::none_of(match::skip_output(match::name("contiguous"))(match::name("transpose")));
        auto input_has_transpose =
            match::args(match::skip(match::name("contiguous"))(match::name("transpose")));
        return match::name("transpose")(output_not_transpose, input_has_transpose);
Paul's avatar
Paul committed
141
142
    }

143
    void apply(module& m, const match::matcher_result& mr) const
Paul's avatar
Paul committed
144
145
    {
        auto ins = mr.result;
Paul's avatar
Paul committed
146
147
        auto x   = ins;
        auto t   = ins;
Paul's avatar
Paul committed
148
149
150
151
152
153
154
155
156
157
158
159
        std::vector<std::int64_t> dims(ins->get_shape().lens().size());
        std::iota(dims.begin(), dims.end(), 0);
        do
        {
            dims = reorder_dims(get_transpose_dims(t), dims);
            x    = t;
            t    = find_transpose_input(x);
        } while(x != t and t->name() == "transpose");
        if(t == ins or t->name() != "transpose")
            return;
        if(is_no_transpose(dims))
        {
160
            m.replace_instruction(ins, t->inputs().front());
Paul's avatar
Paul committed
161
162
        }
        else
Paul's avatar
Paul committed
163
        {
164
            m.replace_instruction(
165
                ins, make_op("transpose", {{"permutation", dims}}), t->inputs().front());
Paul's avatar
Paul committed
166
        }
Paul's avatar
Paul committed
167
    }
Paul's avatar
Paul committed
168
169
};

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
struct find_nested_convert
{
    auto matcher() const { return match::name("convert")(match::arg(0)(match::name("convert"))); }

    void apply(module& m, const match::matcher_result& mr) const
    {
        auto ins   = mr.result;
        auto x     = ins->inputs().front();
        auto input = x->inputs().front();

        if(ins->get_shape() != input->get_shape())
            return;

        m.replace_instruction(ins, input);
    }
};

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
struct find_nested_slice
{
    auto matcher() const { return match::name("slice")(match::arg(0)(match::name("slice"))); }

    using axes_map = std::map<std::size_t, std::pair<std::size_t, std::size_t>>;

    static axes_map get_axes(instruction_ref ins)
    {
        axes_map result;
        auto op = any_cast<op::slice>(ins->get_operator());
        for(std::size_t i = 0; i < op.axes.size(); i++)
        {
            result[op.axes[i]] = std::make_pair(op.starts[i], op.ends[i]);
        }
        return result;
    }

    static axes_map merge(const axes_map& m1, const axes_map& m2)
    {
        axes_map result;
        // Non overlapping
        for(auto&& p : m1)
        {
            if(contains(m2, p.first))
                continue;
            result[p.first] = p.second;
        }
        for(auto&& p : m2)
        {
            if(contains(m1, p.first))
                continue;
            result[p.first] = p.second;
        }
        // Overlapping
        for(auto&& p1 : m1)
        {
            if(not contains(m2, p1.first))
                continue;
            auto&& v1        = p1.second;
            auto&& v2        = m2.at(p1.first);
            auto start       = v1.first + v2.first;
            auto end         = start + (v2.second - v2.first);
            result[p1.first] = std::make_pair(start, end);
        }
        return result;
    }

234
    void apply(module& m, const match::matcher_result& mr) const
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    {
        auto ins   = mr.result;
        auto slice = ins->inputs().front();
        auto input = slice->inputs().front();

        auto a1 = get_axes(ins);
        auto a2 = get_axes(slice);

        auto axes = merge(a2, a1);

        auto op = op::slice{};
        for(auto&& pp : axes)
        {
            op.axes.push_back(pp.first);
            op.starts.push_back(pp.second.first);
            op.ends.push_back(pp.second.second);
        }
252
        m.replace_instruction(ins, op, input);
253
254
255
    }
};

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
struct find_concat_multibroadcasts
{
    auto matcher() const
    {
        return match::name("concat")(match::all_of[match::inputs()](match::name("multibroadcast")));
    }

    void apply(module& m, const match::matcher_result& mr) const
    {
        auto ins        = mr.result;
        auto op         = any_cast<op::concat>(ins->get_operator());
        auto out_lens   = ins->get_shape().lens();
        auto inputs     = ins->inputs();
        auto in_strides = inputs.front()->get_shape().strides();

        // Only apply when concat axis is not a broadcasted dimension
        if(std::any_of(inputs.begin(), inputs.end(), [&](auto i) {
               return i->get_shape().strides()[op.axis] == 0;
           }))
        {
            return;
        }

        // Use inputs of multibroadcast ops as inputs to new concat op
        std::transform(inputs.begin(), inputs.end(), inputs.begin(), [](auto i) {
            return i->inputs().front();
        });

        // Reduce axis by number of leading broadcasted dimensions
        if(inputs.front()->get_shape().lens().size() < out_lens.size())
            op.axis -= std::count(in_strides.begin(), in_strides.begin() + op.axis, 0);

        auto concat = m.insert_instruction(ins, op, inputs);
        m.replace_instruction(
            ins, migraphx::make_op("multibroadcast", {{"out_lens", out_lens}}), concat);
    }
};

Paul's avatar
Paul committed
294
295
296
297
struct find_concat_transpose
{
    auto matcher() const
    {
298
        return match::name("concat")(match::all_of[match::inputs()](match::name("transpose")));
Paul's avatar
Paul committed
299
300
    }

301
    void apply(module& m, const match::matcher_result& mr) const
Paul's avatar
Paul committed
302
    {
Shucai Xiao's avatar
Shucai Xiao committed
303
304
305
        auto ins          = mr.result;
        auto trans_inputs = ins->inputs();
        auto s            = trans_inputs.front()->get_shape();
Paul's avatar
Paul committed
306
        assert(s.transposed());
Shucai Xiao's avatar
Shucai Xiao committed
307
308
309
310
        auto op          = any_cast<op::concat>(ins->get_operator());
        auto permutation = find_permutation(s);

        // permutation should be the same for all inputs
311
        if(not std::all_of(trans_inputs.begin(), trans_inputs.end(), [&](auto in) {
Shucai Xiao's avatar
Shucai Xiao committed
312
313
314
315
316
317
318
319
               return (find_permutation(in->get_shape()) == permutation);
           }))
        {
            return;
        }

        // axis could be a negative value
        int64_t n_dim = static_cast<int64_t>(s.lens().size());
320
        op.axis       = tune_axis(n_dim, op.axis, op.name());
Shucai Xiao's avatar
Shucai Xiao committed
321

Paul's avatar
Paul committed
322
        auto ipermutation = invert_permutation(permutation);
Paul's avatar
Paul committed
323
        op.axis           = ipermutation[op.axis];
Paul's avatar
Paul committed
324
325
326

        std::vector<instruction_ref> inputs;
        std::transform(
Paul's avatar
Paul committed
327
            ins->inputs().begin(), ins->inputs().end(), std::back_inserter(inputs), [&](auto i) {
328
                return m.insert_instruction(
329
                    ins, make_op("transpose", {{"permutation", permutation}}), i);
Paul's avatar
Paul committed
330
            });
331
332
        auto concat = m.insert_instruction(ins, op, inputs);
        auto t      = m.insert_instruction(
333
            ins, make_op("transpose", {{"permutation", ipermutation}}), concat);
Paul's avatar
Paul committed
334
        assert(ins->get_shape().lens() == t->get_shape().lens());
335
        m.replace_instruction(ins, t);
Paul's avatar
Paul committed
336
337
338
    }
};

Paul Fultz II's avatar
Paul Fultz II committed
339
340
341
342
343
344
345
346
347
348
349
350
351
struct find_nested_concat
{
    auto matcher() const
    {
        return match::name("concat")(match::any_of[match::inputs()](match::name("concat")));
    }

    static std::size_t get_axis(instruction_ref ins)
    {
        auto op = any_cast<op::concat>(ins->get_operator());
        return op.axis;
    }

352
    void apply(module& m, const match::matcher_result& mr) const
Paul Fultz II's avatar
Paul Fultz II committed
353
354
355
356
357
358
359
360
361
362
363
364
365
    {
        auto ins  = mr.result;
        auto axis = get_axis(ins);
        std::vector<instruction_ref> args;
        fix([&](auto self, auto&& inputs) {
            for(auto&& i : inputs)
            {
                if(i->name() == "concat" and get_axis(i) == axis and i->outputs().size() == 1)
                    self(i->inputs());
                else
                    args.push_back(i);
            }
        })(ins->inputs());
366
        m.replace_instruction(ins, ins->get_operator(), args);
Paul Fultz II's avatar
Paul Fultz II committed
367
368
369
    }
};

370
371
372
373
374
375
376
377
struct find_resize
{
    auto matcher() const
    {
        return match::name("gather")(
            match::args(match::name("reshape").bind("data"), match::is_constant().bind("ind")));
    }

378
    void apply(module& m, const match::matcher_result& r) const
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
    {
        auto ins     = r.result;
        auto ins_rsp = r.instructions["data"];
        auto ins_ind = r.instructions["ind"];

        // resize input shape
        if(ins_rsp->get_shape().lens().size() != 1)
        {
            return;
        }

        // resize output shape
        const auto& in_shape  = ins_rsp->inputs().front()->get_shape();
        const auto& out_shape = ins->get_shape();
        // check if output shape is multiple of input shape
        const auto& in_lens  = in_shape.lens();
        const auto& out_lens = out_shape.lens();
        if(in_lens.size() != out_lens.size())
        {
            return;
        }

        // output shape must be multiple of input shape
        std::vector<bool> is_multi(in_lens.size());
        std::transform(
            in_lens.begin(), in_lens.end(), out_lens.begin(), is_multi.begin(), [](auto x, auto y) {
                return (y % x == 0);
            });
        if(not std::all_of(is_multi.begin(), is_multi.end(), [](auto b) { return b; }))
        {
            return;
        }

        // output must be multiple of inputs
        std::vector<std::size_t> scales(in_lens.size());
        std::transform(
            in_lens.begin(), in_lens.end(), out_lens.begin(), scales.begin(), [](auto x, auto y) {
                return y / x;
            });

        // if ind is not constant, cannot optimize
        std::vector<int> vec_ind;
        auto arg_ind = ins_ind->eval();
        if(arg_ind.empty())
        {
            return;
        }
        arg_ind.visit([&](auto v) { vec_ind.assign(v.begin(), v.end()); });
427
        if(not all_of(range(out_shape.elements()), [&](auto i) {
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
               auto out_idx = out_shape.multi(i);
               auto in_idx  = out_idx;
               std::transform(out_idx.begin(),
                              out_idx.end(),
                              scales.begin(),
                              in_idx.begin(),
                              [&](auto io, auto scale) { return io - (io % scale); });
               return vec_ind[i] == vec_ind[out_shape.index(in_idx)];
           }))
        {
            return;
        }

        // wrap up shapes for multibroadcast
        std::vector<std::pair<std::size_t, std::size_t>> dim_scales;
        std::transform(in_lens.begin(),
                       in_lens.end(),
                       out_lens.begin(),
                       std::back_inserter(dim_scales),
                       [](auto x, auto y) { return std::make_pair(x, y / x); });

        std::vector<int64_t> in_dims;
        std::vector<int64_t> out_dims;
        for(auto& isp : dim_scales)
        {
            in_dims.push_back(isp.first);
            out_dims.push_back(isp.first * isp.second);
            if(isp.first == 1 or isp.second == 1)
            {
                continue;
            }

            out_dims.back() = isp.first;
            in_dims.push_back(1);
            out_dims.push_back(isp.second);
        }

        auto in_rsp   = ins_rsp->inputs().front();
466
        auto rsp_data = m.insert_instruction(
467
            ins_rsp, migraphx::make_op("reshape", {{"dims", in_dims}}), in_rsp);
468
        auto mb_rsp = m.insert_instruction(
469
            ins_rsp, migraphx::make_op("multibroadcast", {{"out_lens", out_dims}}), rsp_data);
470
        auto std_mb = m.insert_instruction(ins, migraphx::make_op("contiguous"), mb_rsp);
471
        std::vector<int64_t> rsp_dims(out_lens.begin(), out_lens.end());
472
        m.replace_instruction(ins, migraphx::make_op("reshape", {{"dims", rsp_dims}}), std_mb);
473
474
475
476
477
478
479
480
481
482
483
484
    }
};

struct find_where_op
{
    auto matcher() const
    {
        return match::name("gather")(
            match::args(match::name("reshape")(match::arg(0)(match::name("concat").bind("data"))),
                        match::is_constant().bind("ind")));
    }

485
    void apply(module& m, const match::matcher_result& r) const
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
    {
        auto ins     = r.result;
        auto concat  = r.instructions["data"];
        auto ins_ind = r.instructions["ind"];
        std::vector<bool> vec_ind;
        auto arg_ind = ins_ind->eval();
        arg_ind.visit([&](auto v) { vec_ind.assign(v.begin(), v.end()); });
        // ind has to be the same value
        auto val = vec_ind.front();
        if(not std::all_of(vec_ind.begin(), vec_ind.end(), [&](auto v) { return (v == val); }))
        {
            return;
        }

        // concat axis must be 0
        auto op = any_cast<op::concat>(concat->get_operator());
        if(op.axis != 0)
        {
            return;
        }

        // check concat inputs, it has to be 2 and have the same shape
        const auto& inputs = concat->inputs();
        if(inputs.size() != 2)
        {
            return;
        }
        if(inputs.at(0)->get_shape() != inputs.at(1)->get_shape())
        {
            return;
        }
        if(inputs.at(0)->get_shape().lens() != ins_ind->get_shape().lens())
        {
            return;
        }

        if(val)
        {
524
            m.replace_instruction(ins, inputs.at(0));
525
526
527
        }
        else
        {
528
            m.replace_instruction(ins, inputs.at(1));
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
        }
    }
};

struct find_reshape_cont
{
    auto matcher() const
    {
        return match::pointwise(
            match::nargs(2),
            match::either_arg(0, 1)(
                match::name("reshape")(match::args(match::name("contiguous").bind("cont")))
                    .bind("rsp"),
                match::any()));
    }

545
    void apply(module& m, const match::matcher_result& r) const
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
    {
        auto ins      = r.result;
        auto ins_cont = r.instructions["cont"];
        auto in_ins   = r.instructions["rsp"];

        auto cont_input = ins_cont->inputs().front();
        auto lens       = cont_input->get_shape().lens();
        std::vector<int64_t> dims(lens.begin(), lens.end());

        if(in_ins->get_shape() != ins->get_shape())
        {
            return;
        }

        if(not std::all_of(ins->inputs().begin(), ins->inputs().end(), [](auto i) {
               return i->get_shape().standard();
           }))
        {
            return;
        }

        auto out_lens = ins->get_shape().lens();
        std::vector<int64_t> out_dims(out_lens.begin(), out_lens.end());
        std::vector<instruction_ref> inputs;
        for(const auto& in : ins->inputs())
        {
            if(in == in_ins)
            {
                inputs.push_back(cont_input);
            }
            else
            {
                inputs.push_back(
579
                    m.insert_instruction(ins, make_op("reshape", {{"dims", dims}}), in));
580
581
            }
        }
582
583
        auto out = m.insert_instruction(ins, ins->get_operator(), inputs);
        m.replace_instruction(ins, make_op("reshape", {{"dims", out_dims}}), out);
584
585
586
    }
};

587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
// match sequence of transpose --> contiguous --> reshaper_op
auto match_transpose_contiguous_reshaper()
{
    return match::name({"reshape", "squeeze", "unsqueeze"})(
               match::used_once(),
               match::args(
                   match::name("contiguous")(
                       match::used_once(), match::args(match::transpose_shape().bind("trans_ins")))
                       .bind("cont_ins")))
        .bind("reshaper_ins");
};

// finds the pattern of transpose --> contiguous --> reshaper_op --> unary
// application of this matcher moves the unary operation before the contiguous so it becomes
// transpose --> unary --> contiguous --> reshaper_op. later pointwise sub-module can be created out
// of unary --> contiguous --> reshaper_op. Such pattern appears in depthToSpace or spaceToDepth
// operator.
struct find_transpose_contiguous_reshaper_unary
{
    auto matcher() const
    {
608
609
610
        return pointwise(match::used_once(),
                         match::nargs(1),
                         match::args(match_transpose_contiguous_reshaper()));
611
612
    }

613
    void apply(module& m, const match::matcher_result& r) const
614
615
616
617
618
619
    {
        auto ins           = r.result;
        auto reshaper_ins  = r.instructions["reshaper_ins"];
        auto trans_ins     = r.instructions["trans_ins"];
        auto cont_ins      = r.instructions["cont_ins"];
        auto unary_op_name = ins->get_operator().name();
620
621
        auto unary_ins     = m.insert_instruction(cont_ins, make_op(unary_op_name), trans_ins);
        auto new_cont_ins  = m.insert_instruction(cont_ins, make_op("contiguous"), unary_ins);
622
        // older cont and reshape are removed by deadcode elimination
623
        m.replace_instruction(ins, reshaper_ins->get_operator(), new_cont_ins);
624
625
626
    }
};

627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
struct find_slice_transpose
{
    auto matcher() const
    {
        return match::any(match::any_of[match::outputs()](
            match::name("slice")(match::output(match::name("transpose")))));
    }

    static std::vector<int64_t> find_common_perm(const std::vector<instruction_ref>& transposes)
    {
        std::map<std::vector<int64_t>, int64_t> count;
        for(auto t : transposes)
        {
            auto perm = t->get_operator().to_value()["permutation"].to_vector<int64_t>();
            count[perm]++;
        }
        return std::max_element(
                   count.begin(), count.end(), by(std::less<>{}, [](auto&& p) { return p.second; }))
            ->first;
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins = r.result;
        std::vector<instruction_ref> splits;
        std::copy_if(ins->outputs().begin(),
                     ins->outputs().end(),
                     std::back_inserter(splits),
                     [&](instruction_ref out) {
                         return out->name() == "slice" and out->outputs().size() == 1 and
                                out->outputs().front()->name() == "transpose";
                     });
        if(splits.size() < 2)
            return;
        std::vector<instruction_ref> transposes;
        std::transform(splits.begin(),
                       splits.end(),
                       std::back_inserter(transposes),
                       [](auto split) { return split->outputs().front(); });
        auto perm  = find_common_perm(transposes);
        auto iperm = invert_permutation(perm);
        auto pre   = m.insert_instruction(
            std::next(ins), make_op("transpose", {{"permutation", perm}}), ins);
        for(auto i : range(transposes.size()))
        {
            auto split = splits[i];
            auto t     = transposes[i];
            auto op    = any_cast<op::slice>(split->get_operator());
            std::transform(op.axes.begin(), op.axes.end(), op.axes.begin(), [&](auto axis) {
                return iperm[axis];
            });
            auto new_ins = m.insert_instruction(t, op, pre);
            if(t->get_operator() != pre->get_operator())
            {
                auto curr = t->get_operator().to_value()["permutation"].to_vector<int64_t>();
                new_ins   = m.insert_instruction(
                    t, make_op("transpose", {{"permutation", reorder_dims(iperm, curr)}}), new_ins);
            }
            m.replace_instruction(t, new_ins);
        }
    }
};

690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
struct find_transpose_slice
{
    auto matcher() const
    {
        return match::name("transpose")(match::all_of[match::outputs()](match::name("slice")));
    }

    static std::vector<int64_t> slice_distance(const op::slice& op)
    {
        assert(op.starts.size() == op.ends.size());
        std::vector<int64_t> result(op.starts.size());
        std::transform(
            op.ends.begin(), op.ends.end(), op.starts.begin(), result.begin(), std::minus<>{});
        return result;
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins    = r.result;
        auto slices = ins->outputs();
        if(slices.empty())
            return;
        auto slice     = any_cast<op::slice>(slices.front()->get_operator());
        auto sdistance = slice_distance(slice);
        // Check all distances and axes are the same
        if(std::any_of(slices.begin(), slices.end(), [&](auto sins) {
               auto s = any_cast<op::slice>(sins->get_operator());
               return s.axes != slice.axes or slice_distance(s) != sdistance;
           }))
            return;
        // Check distances are divisible by lens of corresponding axes
        auto mod_by_distance = [&](const auto& v, auto f) {
            return std::inner_product(v.begin(),
                                      v.end(),
                                      sdistance.begin(),
                                      0,
                                      std::plus<>{},
                                      [&](auto x, auto d) -> uint64_t {
                                          if(d == 0)
                                              return 1;
                                          return f(x) % d;
                                      });
        };
        if(mod_by_distance(slice.axes, [&](auto x) { return ins->get_shape().lens()[x]; }) != 0 or
           mod_by_distance(slice.starts, id{}) != 0 or mod_by_distance(slice.ends, id{}) != 0)
            return;
        // TODO: Handle multiple axes
        if(sdistance.size() != 1)
            return;
        auto axis = slice.axes.front();
        // Skip if axis would be packed
        if(std::all_of(ins->get_shape().lens().begin(),
                       ins->get_shape().lens().begin() + axis,
                       [](auto x) { return x == 1; }))
            return;
        // Compute axis before transpose to use for unsqueeze
        auto perm    = ins->get_operator().to_value()["permutation"].to_vector<int64_t>();
        auto preaxis = std::find(perm.begin(), perm.end(), axis) - perm.begin();
shivadbhavsar's avatar
shivadbhavsar committed
748
749
750
751
752
753
754
755
        // Make unsqueeze
        std::vector<int64_t> steps(sdistance.size());
        std::transform(
            slice.axes.begin(),
            slice.axes.end(),
            sdistance.begin(),
            steps.begin(),
            [&](const auto ax, const auto sdis) { return ins->get_shape().lens().at(ax) / sdis; });
756
        auto unsqueeze = m.insert_instruction(
shivadbhavsar's avatar
shivadbhavsar committed
757
            ins, make_op("unsqueeze", {{"axes", {preaxis}}, {"steps", steps}}), ins->inputs());
758
759
        // Make transpose
        std::transform(perm.begin(), perm.end(), perm.begin(), [&](auto i) {
shivadbhavsar's avatar
shivadbhavsar committed
760
            if(i >= preaxis)
761
762
763
                return i + 1;
            return i;
        });
shivadbhavsar's avatar
shivadbhavsar committed
764
        perm.insert(perm.begin(), preaxis);
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
        auto transpose =
            m.insert_instruction(ins, make_op("transpose", {{"permutation", perm}}), unsqueeze);
        // Slice and squeeze
        for(auto s : slices)
        {
            auto op        = any_cast<op::slice>(s->get_operator());
            op.axes        = {0};
            op.starts      = {op.starts.front() / sdistance.front()};
            op.ends        = {op.ends.front() / sdistance.front()};
            auto slice_ins = m.insert_instruction(ins, op, transpose);
            auto squeeze =
                m.insert_instruction(ins, make_op("squeeze", {{"axes", {0}}}), slice_ins);
            m.replace_instruction(s, squeeze);
        }
    }
};

Paul's avatar
Paul committed
782
783
struct find_reshape_gemm
{
Paul's avatar
Format  
Paul committed
784
    auto matcher() const { return match::name("reshape")(match::arg(0)(match::name("dot"))); }
Paul's avatar
Paul committed
785
786
787

    static bool is_batched_unsqueeze(instruction_ref ins)
    {
Paul's avatar
Format  
Paul committed
788
        auto input  = ins->inputs().front()->get_shape().lens();
Paul's avatar
Paul committed
789
        auto output = ins->get_shape().lens();
Paul's avatar
Format  
Paul committed
790
        if(output.size() <= input.size())
Paul's avatar
Paul committed
791
            return false;
Paul's avatar
Format  
Paul committed
792
        if(not std::equal(input.end() - 2, input.end(), output.end() - 2, output.end()))
Paul's avatar
Paul committed
793
794
795
796
797
798
            return false;
        return true;
    }

    static operation make_reshape(std::vector<std::size_t> batches, instruction_ref ins)
    {
Paul's avatar
Format  
Paul committed
799
800
        batches.insert(
            batches.end(), ins->get_shape().lens().end() - 2, ins->get_shape().lens().end());
Paul's avatar
Paul committed
801
802
803
804
805
806
        return make_op("reshape", {{"dims", batches}});
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto reshape_ins = r.result;
Paul's avatar
Format  
Paul committed
807
        auto dot_ins     = reshape_ins->inputs().front();
Paul's avatar
Paul committed
808
809

        // TODO: Put this in the matcher
Paul's avatar
Format  
Paul committed
810
        if(not is_batched_unsqueeze(reshape_ins))
Paul's avatar
Paul committed
811
812
813
            return;

        std::vector<std::size_t> batches;
Paul's avatar
Format  
Paul committed
814
815
816
817
818
819
820
821
        std::copy(reshape_ins->get_shape().lens().begin(),
                  reshape_ins->get_shape().lens().end() - 2,
                  std::back_inserter(batches));

        auto input0 = m.insert_instruction(
            dot_ins, make_reshape(batches, dot_ins->inputs()[0]), dot_ins->inputs()[0]);
        auto input1 = m.insert_instruction(
            dot_ins, make_reshape(batches, dot_ins->inputs()[1]), dot_ins->inputs()[1]);
Paul's avatar
Paul committed
822
823
824
825
        m.replace_instruction(dot_ins, make_op("dot"), input0, input1);
    }
};

826
void simplify_reshapes::apply(module& m) const
Paul's avatar
Paul committed
827
{
828
    for(int i = 0; i < 4; i++)
Paul's avatar
Paul committed
829
    {
830
        match::find_matches(m,
831
832
                            find_where_op{},
                            find_resize{},
833
834
                            find_nop_reshapes{},
                            find_reshaper{},
Paul's avatar
Paul committed
835
                            find_reshape_cont{},
836
837
                            find_transpose{},
                            find_concat_transpose{},
838
                            find_concat_multibroadcasts{},
839
                            find_nested_convert{},
840
                            find_nested_slice{},
841
                            find_nested_concat{},
842
                            find_transpose_slice{},
843
                            find_slice_transpose{},
Paul's avatar
Paul committed
844
845
                            find_transpose_contiguous_reshaper_unary{},
                            find_reshape_gemm{});
846
        dead_code_elimination{}.apply(m);
Paul's avatar
Paul committed
847
    }
Paul's avatar
Paul committed
848
849
}

Paul's avatar
Paul committed
850
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
851
} // namespace migraphx