eliminate_pad.cpp 2.92 KB
Newer Older
1
#include <migraphx/eliminate_pad.hpp>
2
3
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
4
5
6
7
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/im2col.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/pad.hpp>
kahmed10's avatar
kahmed10 committed
8
#include <migraphx/make_op.hpp>
9
10
11
12
13
14
#include <migraphx/iterator_for.hpp>
#include <migraphx/stringutils.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

kahmed10's avatar
kahmed10 committed
15
static void update_op(const instruction_ref& input, const instruction_ref& ins, module& m)
16
{
Khalique's avatar
Khalique committed
17
    auto pad_op = any_cast<op::pad>(input->get_operator());
Khalique's avatar
Khalique committed
18

19
20
21
    auto kdims    = input->get_shape().lens().size() - 2;
    auto kdims_it = pad_op.pads.begin() + 2;

kahmed10's avatar
kahmed10 committed
22
23
    std::vector<size_t> pads_l(kdims_it, kdims_it + kdims);
    std::vector<size_t> pads_r(kdims_it + kdims + 2, pad_op.pads.end());
24

25
    auto op = ins->get_operator();
kahmed10's avatar
kahmed10 committed
26
27
28
29
30
31
32
33
34
35
36
    std::vector<size_t> padding(kdims * 2, 0);

    std::transform(
        pads_l.begin(), pads_l.end(), padding.begin(), padding.begin(), std::plus<size_t>());
    std::transform(pads_r.begin(),
                   pads_r.end(),
                   padding.begin() + kdims,
                   padding.begin() + kdims,
                   std::plus<size_t>());

    op.from_value({{"padding", padding}});
Khalique's avatar
Khalique committed
37

Khalique's avatar
Khalique committed
38
39
    std::vector<instruction_ref> new_inputs{ins->inputs()};
    new_inputs.front() = input->inputs().front();
Khalique's avatar
Khalique committed
40

kahmed10's avatar
kahmed10 committed
41
    m.replace_instruction(ins, op, new_inputs);
Khalique's avatar
Khalique committed
42
}
43

kahmed10's avatar
kahmed10 committed
44
static void update_pooling(const instruction_ref& input, const instruction_ref& ins, module& m)
45
46
47
48
49
50
{
    auto op = any_cast<op::pooling>(ins->get_operator());
    if(op.mode == "average")
    {
        return;
    }
kahmed10's avatar
kahmed10 committed
51
52
53
54
55
56
57
    auto pad_op = any_cast<op::pad>(input->get_operator());

    auto kdims    = input->get_shape().lens().size() - 2;
    auto kdims_it = pad_op.pads.begin() + 2;

    std::vector<size_t> pads_l(kdims_it, kdims_it + kdims);
    std::vector<size_t> pads_r(kdims_it + kdims + 2, pad_op.pads.end());
58

kahmed10's avatar
kahmed10 committed
59
60
61
62
63
64
65
    std::transform(
        pads_l.begin(), pads_l.end(), op.padding.begin(), op.padding.begin(), std::plus<size_t>());
    std::transform(pads_r.begin(),
                   pads_r.end(),
                   op.padding.begin() + kdims,
                   op.padding.begin() + kdims,
                   std::plus<size_t>());
66
67
68
69

    std::vector<instruction_ref> new_inputs{ins->inputs()};
    new_inputs.front() = input->inputs().front();

kahmed10's avatar
kahmed10 committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    m.replace_instruction(ins, op, new_inputs);
}

void eliminate_pad::apply(module& m) const
{
    for(auto ins : iterator_for(m))
    {
        const std::string& op_name = ins->name();
        if(op_name != "convolution" and op_name != "im2col" and op_name != "pooling")
            continue;
        auto input = ins->inputs().front();
        if(input->name() != "pad")
            continue;
        if(op_name == "convolution" or op_name == "im2col")
            update_op(input, ins, m);
        else if(op_name == "pooling")
            update_pooling(input, ins, m);
    }
88
89
}

90
91
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx