ck_gemm.cpp 15.8 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <fstream>
#include <filesystem>
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/gpu/context.hpp>

#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/gpu/compile_hip.hpp>
Paul's avatar
Paul committed
32
#include <migraphx/gpu/compile_gen.hpp>
Paul's avatar
Paul committed
33
#include <migraphx/ranges.hpp>
Paul's avatar
Paul committed
34
#include <migraphx/env.hpp>
Paul's avatar
Paul committed
35
36
37
38
#include <migraphx/reduce_dims.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/module.hpp>
#include <migraphx/env.hpp>
Paul's avatar
Paul committed
39
#include <migraphx/file_buffer.hpp>
Paul's avatar
Paul committed
40

Paul's avatar
Paul committed
41
42
const std::vector<std::string>&
get_instance(std::size_t i, const std::function<bool(const std::vector<std::string>&)>& pred);
Paul's avatar
Paul committed
43

Paul's avatar
Paul committed
44
45
46
47
48
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

namespace gpu {

Paul's avatar
Paul committed
49
50
using namespace migraphx::gpu::gen; // NOLINT

Paul's avatar
Paul committed
51
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_LOG_CK_GEMM);
Paul's avatar
Paul committed
52
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_CK_TUNING);
Paul's avatar
Paul committed
53
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_CK_TUNING_VALUE);
Paul's avatar
Paul committed
54
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_CK_DEBUG);
Paul's avatar
Paul committed
55

Paul's avatar
Paul committed
56
57
58
59
// NOLINTNEXTLINE
static const char* const ck_gemm_kernel = R"__migraphx__(
#include <args.hpp>
#include <migraphx/kernels/ck_gemm.hpp>
Paul's avatar
Paul committed
60
#include <migraphx/kernels/pointwise.hpp>
Paul's avatar
Paul committed
61
62
63

namespace migraphx {

Paul's avatar
Paul committed
64
65
${preamble}

Paul's avatar
Paul committed
66
67
extern "C" {

Paul's avatar
Paul committed
68
__global__ void ${kernel}(${params})
Paul's avatar
Paul committed
69
{
Paul's avatar
Paul committed
70
    transform_args(make_tensors(), rotate_last())(${args})([](auto... xs) {
Paul's avatar
Paul committed
71
        ck_gemm<CK_DeviceGemmMultipleD<${instance}>, ${blocks_per_batch}>(xs...);
Paul's avatar
Paul committed
72
73
74
75
76
77
78
79
80
    });
}

}

} // namespace migraphx

)__migraphx__";

Paul's avatar
Paul committed
81
82
static std::size_t int_div_ceil(std::size_t x, std::size_t y) { return (x + y - 1) / y; }

Paul's avatar
Paul committed
83
struct instance
Paul's avatar
Paul committed
84
{
Paul's avatar
Paul committed
85
86
    std::vector<std::string> params;
    static const std::size_t block_size_index = 15;
Paul's avatar
Paul committed
87

Paul's avatar
Format  
Paul committed
88
    std::size_t int_at(std::size_t i) const { return std::stoull(params[i]); }
Paul's avatar
Paul committed
89

Paul's avatar
Format  
Paul committed
90
    std::size_t get_block_size() const { return int_at(block_size_index); }
Paul's avatar
Paul committed
91
92
93
94
95
96
97
98
99
100

    std::size_t get_pb(std::size_t i) const
    {
        assert(i < 4);
        return int_at(block_size_index + 1 + i);
    }

    std::array<std::size_t, 3> get_pad(const std::array<std::size_t, 3>& config) const
    {
        std::array<std::size_t, 3> result{};
Paul's avatar
Format  
Paul committed
101
        for(auto i : range(config.size()))
Paul's avatar
Paul committed
102
103
104
105
106
107
108
109
        {
            result[i] = int_div_ceil(config[i], get_pb(i)) * get_pb(i) - config[i];
        }
        return result;
    }

    std::size_t get_grid_size(const std::array<std::size_t, 3>& config) const
    {
Paul's avatar
Paul committed
110
        return int_div_ceil(config[0], get_pb(0)) * int_div_ceil(config[1], get_pb(1));
Paul's avatar
Paul committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    }

    void set_ds_layout(const std::string& s)
    {
        assert(params[2] == "ck::Tuple<>");
        params[2] = s;
    }

    void set_ds_type(const std::string& s)
    {
        assert(params[8] == "ck::Tuple<>");
        params[8] = s;
    }

125
126
127
128
129
130
    void set_e_type(const std::string& s)
    {
        //assert(params[9] == "ck::Tuple<>");
        params[9] = s;
    }

Paul's avatar
Paul committed
131
132
133
134
135
136
137
138
139
140
141
142
    void set_ds_op(const std::string& s)
    {
        assert(params[12] == "ck_passthrough");
        params[12] = s;
    }

    void set_gemm(const std::string& s)
    {
        assert(params[13] == "ck::tensor_operation::device::GemmSpecialization::Default");
        params[13] = s;
    }

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    void set_a_scalar_per_vec(const std::string& s)
    {
        params[block_size_index + 14] = s;
        params[block_size_index + 15] = s;
    }

    void set_b_scalar_per_vec(const std::string& s)
    {
        params[block_size_index + 20] = s;
        params[block_size_index + 21] = s;
    }

    void set_c_scalar_per_vec(const std::string& s)
    {
        params[params.size() - 3] = s;
    }

Paul's avatar
Format  
Paul committed
160
    std::string str() const { return join_strings(params, ","); }
Paul's avatar
Paul committed
161
};
Paul's avatar
Paul committed
162

Paul's avatar
Paul committed
163
164
static bool transposed_matrix(const shape& s) { return s.strides().back() != 1; }

Paul's avatar
Format  
Paul committed
165
template <class F, class Action>
Paul's avatar
Paul committed
166
167
168
169
170
171
172
173
auto action_decorate(F f, Action action)
{
    return [=](auto&&... xs) {
        action();
        f(std::forward<decltype(xs)>(xs)...);
    };
}

Paul's avatar
Paul committed
174
175
176
using tuning_entry = std::pair<std::vector<shape>, size_t>;
static std::vector<tuning_entry> read_tuning(const std::string& s)
{
Paul's avatar
Format  
Paul committed
177
    if(not fs::exists(s))
Paul's avatar
Paul committed
178
179
180
181
        return {};
    return from_value<std::vector<tuning_entry>>(from_json_string(read_string(s)));
}

Paul's avatar
Paul committed
182
183
static float matrix_distance(const shape& x, const shape& y)
{
Paul's avatar
Format  
Paul committed
184
    if(x.type() != y.type())
Paul's avatar
Paul committed
185
        return std::numeric_limits<float>::max();
Paul's avatar
Format  
Paul committed
186
    if(transposed_matrix(x) != transposed_matrix(y))
Paul's avatar
Paul committed
187
        return std::numeric_limits<float>::max();
Paul's avatar
Format  
Paul committed
188
189
190
191
192
193
    auto sum_squared = std::inner_product(x.lens().rbegin(),
                                          x.lens().rbegin() + 2,
                                          y.lens().rbegin(),
                                          0,
                                          std::plus<>{},
                                          [](auto a, auto b) { return (a - b) * (a - b); });
Paul's avatar
Paul committed
194
195
196
    return std::sqrt(sum_squared);
}

Paul's avatar
Paul committed
197
198
199
static std::size_t get_tuning_for(const std::vector<shape>& inputs)
{
    static auto tuning = read_tuning(string_value_of(MIGRAPHX_CK_TUNING{}, ""));
Paul's avatar
Format  
Paul committed
200
    if(tuning.empty())
201
202
203
204
205
206
    {
        std::cout << "*********** Warning: No CK tuning! for config:" << std::endl;
        std::cout << "  " << inputs[0] << std::endl;
        std::cout << "  " << inputs[1] << std::endl;
        std::cout << "  " << inputs[2] << std::endl;
    }
Paul's avatar
Format  
Paul committed
207
    auto it = std::find_if(
Paul's avatar
Format  
Paul committed
208
        tuning.begin(), tuning.end(), [&](const auto& p) { return p.first == inputs; });
Paul's avatar
Format  
Paul committed
209
210
    if(it == tuning.end())
    {
Paul's avatar
Paul committed
211
        std::cout << "*********** Warning: CK tuning missing for config!" << std::endl;
212
213
214
        std::cout << "  " << inputs[0] << std::endl;
        std::cout << "  " << inputs[1] << std::endl;
        std::cout << "  " << inputs[2] << std::endl;
Paul's avatar
Paul committed
215
216
        std::vector<std::pair<float, std::size_t>> w;
        std::transform(tuning.begin(), tuning.end(), std::back_inserter(w), [&](const auto& p) {
Paul's avatar
Format  
Paul committed
217
            if(inputs.size() < 3 or p.first.size() < 3)
Paul's avatar
Paul committed
218
                MIGRAPHX_THROW("Invalid CK config");
Paul's avatar
Format  
Paul committed
219
220
221
222
223
224
225
            auto avg_distance = std::inner_product(
                p.first.begin(),
                p.first.begin() + 3,
                inputs.begin(),
                0.0f,
                std::plus<>{},
                [](const auto& x, const auto& y) { return matrix_distance(x, y) / 3.0f; });
Paul's avatar
Paul committed
226
227
228
229
            return std::make_pair(avg_distance, p.second);
        });
        std::sort(w.begin(), w.end());
        std::size_t default_value = 4;
Paul's avatar
Format  
Paul committed
230
        if(not w.empty())
Paul's avatar
Paul committed
231
            default_value = w.front().second;
Paul's avatar
Paul committed
232
233
234
        auto tuning_val = value_of(MIGRAPHX_CK_TUNING_VALUE{}, default_value);
        std::cout << "*********** Warning: CK try tuning: " << tuning_val << std::endl;
        return tuning_val;
Paul's avatar
Paul committed
235
    }
Paul's avatar
Paul committed
236
237
238
    return it->second;
}

Paul's avatar
Paul committed
239
240
struct ck_gemm_compiler : compiler<ck_gemm_compiler>
{
Paul's avatar
Paul committed
241
242
    static std::string get_layout(const shape& s)
    {
Paul's avatar
Paul committed
243
        return transposed_matrix(s) ? "ck::tensor_layout::gemm::ColumnMajor"
Paul's avatar
Format  
Paul committed
244
                                    : "ck::tensor_layout::gemm::RowMajor";
Paul's avatar
Paul committed
245
246
247
    }

    static std::string get_type(const shape& s)
Paul's avatar
Paul committed
248
    {
Paul's avatar
Format  
Paul committed
249
        if(s.type() == shape::half_type)
Paul's avatar
Paul committed
250
251
252
            return "ck::half_t";
        return shape::cpp_type(s.type());
    }
Paul's avatar
Paul committed
253

Paul's avatar
Format  
Paul committed
254
    template <class Iterator, class F>
Paul's avatar
Paul committed
255
256
257
258
259
260
261
    static std::string ck_tuple(Iterator start, Iterator last, F f)
    {
        std::vector<std::string> s;
        std::transform(start, last, std::back_inserter(s), f);
        return "ck::Tuple<" + join_strings(s, ",") + ">";
    }

Paul's avatar
Paul committed
262
263
    static std::vector<shape> adjust_inputs(std::vector<shape> inputs, bool& swap_inputs)
    {
Paul's avatar
Format  
Paul committed
264
        swap_inputs  = false;
Paul's avatar
Paul committed
265
        auto c_shape = inputs.back();
Paul's avatar
Format  
Paul committed
266
        if(not transposed_matrix(c_shape))
Paul's avatar
Paul committed
267
268
269
270
271
272
273
274
275
276
277
            return inputs;
        std::vector<int64_t> perm(c_shape.lens().size());
        std::iota(perm.begin(), perm.end(), 0);
        std::swap(perm[perm.size() - 1], perm[perm.size() - 2]);
        std::transform(inputs.begin(), inputs.end(), inputs.begin(), [&](shape s) {
            return reorder_shape(s, perm);
        });
        swap_inputs = true;
        return inputs;
    }

278
279
    static std::size_t get_batch_count(const shape& s)
    {
Alan Turner's avatar
Alan Turner committed
280
281
        return std::accumulate(
            s.lens().rbegin() + 2, s.lens().rend(), std::size_t{1}, std::multiplies<std::size_t>());
282
283
284
285
286
    }

    static void fold_batch_dims(shape& s)
    {
        auto lens = s.lens();
Alan Turner's avatar
Alan Turner committed
287
        if(lens.size() <= 2)
288
289
            return;
        auto batch_count = get_batch_count(s);
Alan Turner's avatar
Alan Turner committed
290
291
292
        auto m1          = lens.at(lens.size() - 2);
        auto m2          = lens.at(lens.size() - 1);
        if(transposed_matrix(s))
293
294
295
296
297
298
299
300
            s = shape{s.type(), {m1, m2 * batch_count}};
        else
            s = shape{s.type(), {m1 * batch_count, m2}};
    }

    static void remove_batch_dims(shape& s)
    {
        auto lens = s.lens();
Alan Turner's avatar
Alan Turner committed
301
        if(lens.size() <= 2)
302
303
304
            return;
        auto m1 = lens.at(lens.size() - 2);
        auto m2 = lens.at(lens.size() - 1);
Alan Turner's avatar
Alan Turner committed
305
        s       = shape{s.type(), {m1, m2}};
306
307
    }

308
    std::vector<std::string> names() const { return {"ck_gemm", "gpu::ck_gemm", "ck_gemm_int8", "gpu::ck_gemm_int8"}; }
Paul's avatar
Paul committed
309
310
311

    operation compile_op(context& /* ctx */, const std::vector<shape>& inputs, const value& v) const
    {
Paul's avatar
Paul committed
312
313
        auto a_shape = inputs[0];
        auto b_shape = inputs[1];
Paul's avatar
Paul committed
314
        auto c_shape = inputs.back();
Paul's avatar
Paul committed
315

Alan Turner's avatar
Alan Turner committed
316
317
        auto rank           = a_shape.lens().size();
        auto b_strides      = b_shape.strides();
318
319
        bool can_fold_batch = rank >= 3 and b_strides[rank - 3] == 0;

Alan Turner's avatar
Alan Turner committed
320
321
322
323
324
        auto batch_count = get_batch_count(c_shape);
        auto m           = c_shape.lens()[rank - 2];
        m                = can_fold_batch ? m * batch_count : m;
        auto n           = c_shape.lens().back();
        auto k           = a_shape.lens().back();
Paul's avatar
Paul committed
325
        std::array<char, 3> keys{'M', 'N', 'K'};
326
        std::array<std::size_t, 3> config{m, n, k};
327
        auto tuning_val = v.get("tuning_val", get_tuning_for({a_shape, b_shape, c_shape.with_type(a_shape.type())}));
Paul's avatar
Format  
Paul committed
328
        auto ip         = instance{get_instance(tuning_val, [&](const auto& x) -> bool {
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
            // if (not (get_layout(a_shape) == x[0] and get_layout(b_shape) == x[1] and
            //        get_layout(c_shape) == x[3] and get_type(a_shape) == x[4] and
            //        get_type(b_shape) == x[5] and get_type(c_shape) == x[9]))
            // {
            //     std::cout << get_layout(a_shape) << " - " << x[0] <<std::endl;
            //     std::cout << get_layout(b_shape) << " - " << x[1] <<std::endl;
            //     std::cout << get_layout(c_shape) << " - " << x[3] <<std::endl;
            //     std::cout << get_type(a_shape) << " - " << x[4] <<std::endl;
            //     std::cout << get_type(b_shape) << " - " << x[5] <<std::endl;
            //     std::cout << get_type(c_shape) << " - " << x[9] <<std::endl;
            // }
            

            /* return get_layout(a_shape) == x[0] and get_layout(b_shape) == x[1] and
                   get_layout(c_shape) == x[3] and get_type(a_shape) == x[4] and
                   get_type(b_shape) == x[5] and get_type(c_shape) == x[9]; */
Paul's avatar
Format  
Paul committed
345
            return get_layout(a_shape) == x[0] and get_layout(b_shape) == x[1] and
346
                   get_layout(c_shape) == x[3] and get_type(a_shape) == x[4] and
347
                   get_type(b_shape) == x[5];
Paul's avatar
Paul committed
348
        })};
Paul's avatar
Paul committed
349
        assert(inputs.size() < 4 or v.contains("post"));
Paul's avatar
Format  
Paul committed
350
        if(v.contains("post"))
Paul's avatar
Paul committed
351
        {
Paul's avatar
Paul committed
352
353
354
            ip.set_ds_layout(ck_tuple(inputs.begin() + 2, inputs.end() - 1, &get_layout));
            ip.set_ds_type(ck_tuple(inputs.begin() + 2, inputs.end() - 1, &get_type));
            ip.set_ds_op(v.at("post").to<std::string>());
355
            
Paul's avatar
Paul committed
356
        }
357
358
359
360
361
362
363
364
365
366
        ip.set_e_type(get_type(c_shape));
        if (std::any_of(inputs.begin(), inputs.end(), [](auto s) { return get_type(s) == "ck::half_t"; }))
        {
            ip.set_c_scalar_per_vec("8");
        }
        if (std::any_of(inputs.begin(), inputs.end(), [](auto s) { return get_type(s) == "float"; }))
        {
            ip.set_c_scalar_per_vec("4");
        }
            
Paul's avatar
Paul committed
367

Paul's avatar
Paul committed
368
369
        auto padding = ip.get_pad(config);
        std::string gemm_type;
Paul's avatar
Format  
Paul committed
370
        for(auto i : range(padding.size()))
Paul's avatar
Paul committed
371
        {
Paul's avatar
Format  
Paul committed
372
            if(padding[i] != 0)
Paul's avatar
Paul committed
373
374
                gemm_type += keys[i];
        }
Paul's avatar
Format  
Paul committed
375
        if(gemm_type.empty())
Paul's avatar
Paul committed
376
377
378
379
380
            gemm_type = "Default";
        else
            gemm_type += "Padding";
        ip.set_gemm("ck::tensor_operation::device::GemmSpecialization::" + gemm_type);

Paul's avatar
Paul committed
381
382
        auto blocks_per_batch = ip.get_grid_size(config);

Paul's avatar
Paul committed
383
        hip_compile_options options;
Paul's avatar
Paul committed
384
        auto block_size = ip.get_block_size();
385
        auto grid_size  = can_fold_batch ? blocks_per_batch : batch_count * blocks_per_batch;
Paul's avatar
Paul committed
386
        options.set_launch_params(v, grid_size * block_size, block_size);
Paul's avatar
Paul committed
387
        options.inputs         = inputs;
Paul's avatar
Paul committed
388
        options.output         = c_shape;
Paul's avatar
Paul committed
389
        options.kernel_name    = v.get("kernel", "ck_gemm_kernel");
Paul's avatar
Paul committed
390
        options.virtual_inputs = inputs;
Alan Turner's avatar
Alan Turner committed
391
        if(can_fold_batch)
392
393
394
395
396
397
398
        {
            auto vinputs = inputs;
            fold_batch_dims(vinputs[0]);
            remove_batch_dims(vinputs[1]);
            std::for_each(vinputs.begin() + 2, vinputs.end(), fold_batch_dims);
            options.virtual_inputs = vinputs;
        }
Paul's avatar
Paul committed
399

Paul's avatar
Paul committed
400
        if(v.get("check", false) or enabled(MIGRAPHX_CK_DEBUG{}))
Paul's avatar
Paul committed
401
402
            options.params += " -DMIGRAPHX_CK_CHECK=1";

Paul's avatar
Format  
Paul committed
403
        auto src = interpolate_string(ck_gemm_kernel,
Paul's avatar
Paul committed
404
                                      {{"instance", ip.str()},
Paul's avatar
Format  
Paul committed
405
406
                                       {"params", enum_params(inputs.size(), "void * private_p")},
                                       {"args", enum_params(inputs.size(), "private_p")},
Paul's avatar
Paul committed
407
                                       {"blocks_per_batch", to_string(blocks_per_batch)},
Paul's avatar
Format  
Paul committed
408
409
                                       {"preamble", v.get("preamble", std::string{})},
                                       {"kernel", options.kernel_name}});
410
        // std::cout << options.kernel_name << ": " << std::endl;
Paul's avatar
Paul committed
411
412
413
414
415
        return compile_hip_code_object(src, options);
    }

    compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
    {
Paul's avatar
Format  
Paul committed
416
417
        auto v      = op.to_value();
        v["kernel"] = "ck_gemm_kernel";
Paul's avatar
Paul committed
418
419
420
        if(not ins->module_inputs().empty())
        {
            auto* pm      = ins->module_inputs().front();
Paul's avatar
Format  
Paul committed
421
422
423
            v["preamble"] = generate_pointwise(*pm, "post_ck_gemm_function") +
                            "\nMIGRAPHX_LIFT_CLASS(post_ck_gemm, post_ck_gemm_function);";
            v["post"]   = "ck_function_adaptor<post_ck_gemm>";
Paul's avatar
Paul committed
424
            v["kernel"] = "ck_gemm_" + generate_name_from_ops(*pm) + "_kernel";
Paul's avatar
Format  
Paul committed
425
        }
Paul's avatar
Paul committed
426

Paul's avatar
Paul committed
427
        auto shapes = to_shapes(ins->inputs());
Paul's avatar
Paul committed
428
        return action_decorate(replace(compile_op(ctx, shapes, v)), [=] {
Paul's avatar
Format  
Paul committed
429
            if(enabled(MIGRAPHX_LOG_CK_GEMM{}))
Paul's avatar
Paul committed
430
            {
431
                std::vector<shape> gemm_shapes{shapes[0], shapes[1], shapes.back().with_type(shapes[0].type())};
Paul's avatar
Paul committed
432
433
                std::cout << "ck_gemm: " << to_json_string(to_value(gemm_shapes)) << std::endl;
            }
Paul's avatar
Paul committed
434
        });
Paul's avatar
Paul committed
435
436
437
438
439
440
    }
};

} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx