reduce_sum.cpp 2.34 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#include <migraphx/gpu/device/reduce_sum.hpp>
#include <migraphx/gpu/device/launch.hpp>
#include <migraphx/gpu/device/visit.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace device {

struct sum
{
    template<class T>
    MIGRAPHX_DEVICE_CONSTEXPR T operator()(T x, T y) const
    {
        return x + y;
    }
};

template<std::size_t N, class Op, class T, class F>
__device__ auto block_reduce(index idx, Op op, T init, std::size_t n, F f)
{
    using type = decltype(f(idx.local));
    MIGRAPHX_DEVICE_SHARED type buffer[N];
    type x = init;
    for(size_t i = idx.local; i < n; i += N)
    {
        x = op(x, f(i));
    }
    buffer[idx.local] = x;
    __syncthreads();

    for(std::size_t s = 1; s < N; s *= 2)
    {
        const std::size_t index = 2 * s * idx.local;
        if (index < N)
        {
            buffer[index] = op(buffer[index], buffer[index + s]);
        }
        __syncthreads();
    }
    return buffer[0];
}

void reduce_sum(hipStream_t stream, const argument& result, const argument& arg)
{
    auto&& output_shape = result.get_shape();
    auto&& input_shape = arg.get_shape();
    std::vector<std::size_t> reduce_lens;
    std::transform(output_shape.lens().begin(), output_shape.lens().end(), input_shape.lens().begin(), std::back_inserter(reduce_lens), [](auto x, auto y) -> std::size_t {
        if (x == y)
            return 1;
        else
            return y;
    });
    shape reduce_slice{output_shape.type(), reduce_lens, input_shape.strides()};
    hip_visit_all(result, arg, reduce_slice)([&](auto output, auto input, auto reduce_shape) {
        auto nelements = result.get_shape().elements();
        auto relements = reduce_slice.elements();

        const std::size_t block_size = 1024;
        gs_launch(stream, nelements*block_size, block_size)([=](auto i, auto idx) __device__ {
            auto base_idx = output.get_shape().multi(i/block_size);
            auto offset = input.get_shape().index(base_idx);
            auto r = block_reduce<block_size>(idx, sum{}, 0, relements, [&](auto j) __device__ {
                 return input.data()[reduce_shape.index(j) + offset];
            });
            if (idx.local == 0)
                output.data()[i/block_size] = r;
        });
    });
}

} // namespace device
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx