simplify_algebra.cpp 29.6 KB
Newer Older
Paul's avatar
Paul committed
1
#include <migraphx/simplify_algebra.hpp>
Paul's avatar
Paul committed
2
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
3
#include <migraphx/program.hpp>
4
#include <migraphx/op/add.hpp>
Paul's avatar
Paul committed
5
#include <migraphx/op/mul.hpp>
6
#include <migraphx/op/concat.hpp>
7
#include <migraphx/op/slice.hpp>
8
#include <migraphx/op/convolution.hpp>
9
#include <migraphx/op/contiguous.hpp>
10
#include <migraphx/op/as_shape.hpp>
Paul's avatar
Paul committed
11
#include <migraphx/op/broadcast.hpp>
12
13
#include <migraphx/op/neg.hpp>
#include <migraphx/op/recip.hpp>
14
#include <migraphx/op/reshape.hpp>
kahmed10's avatar
kahmed10 committed
15
#include <migraphx/op/rsqrt.hpp>
16
#include <migraphx/op/transpose.hpp>
Paul's avatar
Paul committed
17
18
#include <migraphx/matcher.hpp>
#include <migraphx/literal.hpp>
19
#include <migraphx/algorithm.hpp>
Paul's avatar
Paul committed
20

Paul's avatar
Paul committed
21
namespace migraphx {
Paul's avatar
Paul committed
22
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
23

Paul's avatar
Paul committed
24
auto lit_broadcast() { return match::any_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
25
auto not_lit_broadcast() { return match::none_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
26
27
auto op_lit_broadcast(std::string op, std::string x, std::string y)
{
Paul's avatar
Paul committed
28
29
    return match::name(std::move(op))(match::either_arg(0, 1)(
        lit_broadcast().bind(std::move(x)), not_lit_broadcast().bind(std::move(y))));
Paul's avatar
Paul committed
30
31
}

Paul's avatar
Paul committed
32
33
auto conv_const_weights()
{
Paul's avatar
Paul committed
34
    return match::name("convolution")(match::used_once(),
Paul's avatar
Paul committed
35
                                      match::args(match::any(), match::is_constant().bind("w")));
Paul's avatar
Paul committed
36
37
}

Paul's avatar
Paul committed
38
39
40
struct find_mul_conv
{
    auto matcher() const
Paul's avatar
Paul committed
41
    {
Paul's avatar
Paul committed
42
43
        return match::name("mul")(match::either_arg(0, 1)(conv_const_weights().bind("conv"),
                                                          match::name("broadcast").bind("a")));
Paul's avatar
Paul committed
44
    }
Paul's avatar
Paul committed
45
46

    void apply(program& p, match::matcher_result r) const
Paul's avatar
Paul committed
47
    {
Paul's avatar
Paul committed
48
        auto ins      = r.result;
Paul's avatar
Paul committed
49
        auto conv_ins = r.instructions["conv"];
Paul's avatar
Paul committed
50
51
52
        auto a_ins    = r.instructions["a"];
        auto w_ins    = r.instructions["w"];

Paul's avatar
Paul committed
53
        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
Paul's avatar
Paul committed
54
        if(broadcast_op.axis != 1)
Paul's avatar
Paul committed
55
56
            return;

Paul's avatar
Paul committed
57
58
59
60
61
        auto new_a = p.insert_instruction(
            ins, op::broadcast{0, w_ins->get_shape().lens()}, a_ins->inputs().front());
        auto new_mul  = p.insert_instruction(ins, op::mul{}, new_a, w_ins);
        auto new_conv = p.insert_instruction(
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_mul);
Paul's avatar
Paul committed
62
        p.replace_instruction(ins, new_conv);
Paul's avatar
Paul committed
63
    }
Paul's avatar
Paul committed
64
65
};

Paul's avatar
Paul committed
66
// a * (x + b) => a * x + a * b
Paul's avatar
Paul committed
67
68
69
70
71
struct find_mul_add
{
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
72
73
74
            match::name("add")(
                match::either_arg(0, 1)(
                    match::any().bind("x"),
Paul's avatar
Paul committed
75
                    match::any_of(conv_const_weights(), match::is_constant()).bind("b")),
Paul's avatar
Paul committed
76
                match::none_of(match::args(match::is_constant(), match::is_constant())),
Paul's avatar
Paul committed
77
                match::used_once()),
Paul's avatar
Paul committed
78
            match::is_constant().bind("a")));
Paul's avatar
Paul committed
79
80
81
82
    }

    void apply(program& p, match::matcher_result r) const
    {
Paul's avatar
Paul committed
83
        auto ins   = r.result;
Paul's avatar
Paul committed
84
        auto a_ins = r.instructions["a"];
Paul's avatar
Paul committed
85
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
86
        auto x_ins = r.instructions["x"];
Paul's avatar
Paul committed
87
        assert(x_ins != b_ins);
Paul's avatar
Paul committed
88

Paul's avatar
Paul committed
89
90
91
        auto ax_ins = p.insert_instruction(ins, op::mul{}, a_ins, x_ins);
        auto ab_ins = p.insert_instruction(ins, op::mul{}, a_ins, b_ins);
        p.replace_instruction(ins, op::add{}, ax_ins, ab_ins);
Paul's avatar
Paul committed
92
93
94
    }
};

Paul's avatar
Paul committed
95
struct find_add_lit_broadcast
Paul's avatar
Paul committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
{
    auto matcher() const
    {
        return match::name("add")(
            match::either_arg(0, 1)(op_lit_broadcast("add", "a", "x"), lit_broadcast().bind("b")));
    }

    void apply(program& p, match::matcher_result r) const
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];

        auto sumab = p.insert_instruction(ins, op::add{}, a_ins, b_ins);
        p.replace_instruction(ins, op::add{}, x_ins, sumab);
    }
};

struct find_double_add_lit_broadcast
Paul's avatar
Paul committed
116
{
Paul's avatar
Paul committed
117
118
    auto matcher() const
    {
Paul's avatar
Paul committed
119
        return match::name("add")(
Paul's avatar
Paul committed
120
            match::args(op_lit_broadcast("add", "a", "x"), op_lit_broadcast("add", "b", "y")));
Paul's avatar
Paul committed
121
122
123
124
    }

    void apply(program& p, match::matcher_result r) const
    {
Paul's avatar
Paul committed
125
126
127
128
129
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
130
131
132

        instruction_ref sumab;

Paul's avatar
Paul committed
133
        if(a_ins->name() == "broadcast" and b_ins->name() == "broadcast")
Paul's avatar
Paul committed
134
135
136
        {
            if(a_ins->inputs().at(0)->get_shape() != b_ins->inputs().at(0)->get_shape())
                return;
Paul's avatar
Paul committed
137
138
139
140
            auto op = a_ins->get_operator();
            auto presum =
                p.insert_instruction(ins, op::add{}, a_ins->inputs().at(0), b_ins->inputs().at(0));
            sumab = p.insert_instruction(ins, op, presum);
Paul's avatar
Paul committed
141
142
143
144
145
146
147
148
149
150
151
        }
        else
        {
            sumab = p.insert_instruction(ins, op::add{}, a_ins, b_ins);
        }

        auto sumxy = p.insert_instruction(ins, op::add{}, x_ins, y_ins);
        p.replace_instruction(ins, op::add{}, sumxy, sumab);
    }
};

Paul's avatar
Paul committed
152
153
154
155
struct find_inner_broadcast
{
    auto matcher() const
    {
Paul's avatar
Paul committed
156
157
        return match::name("mul", "add")(
            match::args(match::name("broadcast").bind("x"), match::name("broadcast").bind("y")));
Paul's avatar
Paul committed
158
159
160
161
162
163
164
165
166
167
168
    }

    void apply(program& p, match::matcher_result r) const
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];

        auto xbroadcast = any_cast<op::broadcast>(x_ins->get_operator());
        auto ybroadcast = any_cast<op::broadcast>(y_ins->get_operator());

Paul's avatar
Paul committed
169
        if(xbroadcast.axis != ybroadcast.axis)
Paul's avatar
Paul committed
170
171
            return;

Paul's avatar
Paul committed
172
173
        auto op = p.insert_instruction(
            ins, ins->get_operator(), x_ins->inputs().front(), y_ins->inputs().front());
Paul's avatar
Paul committed
174
175
176
177
        p.replace_instruction(ins, xbroadcast, op);
    }
};

178
struct find_concat_op
179
180
181
{
    auto matcher() const
    {
182
183
        return match::name("concat")(match::any_of[match::inputs()](
            match::name("add", "multiply", "relu", "broadcast"), match::used_once()));
184
185
    }

186
187
    template <class Iterator>
    static std::vector<std::size_t> get_output_lens(Iterator start, Iterator last, std::size_t axis)
188
    {
189
190
191
        assert(start != last);
        std::size_t dim = 0;
        for(auto ins : range(start, last))
192
        {
193
            dim += ins->get_shape().lens().at(axis);
194
        }
195
196
197
        auto lens  = (*start)->get_shape().lens();
        lens[axis] = dim;
        return lens;
198
199
    }

200
    void apply(program& p, const match::matcher_result& r) const
201
    {
202
203
        auto ins  = r.result;
        auto axis = any_cast<op::concat>(ins->get_operator()).axis;
204

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
        auto each = [&](auto start, auto last) -> std::vector<instruction_ref> {
            if(std::distance(start, last) < 2)
                return {start, last};
            auto x = *start;
            if(x->inputs().size() > 2 or x->inputs().empty() or x->outputs().size() > 1)
                return {start, last};
            auto&& name = x->name();
            if(not contains({"add", "multiply", "relu", "broadcast"}, name))
                return {start, last};
            auto op    = x->get_operator();
            auto iaxis = axis;
            // Adjust broadcast lens
            if(op.name() == "broadcast")
            {
                auto b = any_cast<op::broadcast>(op);
                if(b.axis != iaxis)
                    return {start, last};
                b.broadcast_lens = get_output_lens(start, last, iaxis);
                op               = b;
                iaxis            = 0;
            }

            std::vector<instruction_ref> concats;
            for(std::size_t i = 0; i < x->inputs().size(); i++)
            {
                std::vector<instruction_ref> inputs;
                std::transform(start, last, std::back_inserter(inputs), [&](auto j) {
                    return j->inputs().at(i);
                });
                auto concat = p.insert_instruction(ins, op::concat{iaxis}, inputs);
                concats.push_back(concat);
            }
            auto y = p.insert_instruction(ins, op, concats);
            return {y};

        };

        std::vector<instruction_ref> args;
        auto update_args = [&](auto start, auto last) {
            auto x = each(start, last);
            args.insert(args.end(), x.begin(), x.end());
        };
        auto pred = [](auto i, auto j) {
            return i->get_operator() == j->get_operator() and
                   i->inputs().size() == i->inputs().size() and
                   i->outputs().size() == i->outputs().size();
        };
        group_unique(ins->inputs().begin(), ins->inputs().end(), update_args, pred);
        if(args.size() == 1)
            p.replace_instruction(ins, args.front());
        else
            p.replace_instruction(ins, op::concat{axis}, args);
257
258
259
    }
};

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
std::vector<instruction_ref> get_splits(instruction_ref ins)
{
    std::vector<instruction_ref> result;
    std::copy_if(ins->outputs().begin(),
                 ins->outputs().end(),
                 std::back_inserter(result),
                 [&](auto i) { return i->name() == "slice"; });
    if(result.size() < 2)
        return {};
    auto get_slice = [](auto& i) -> auto& { return any_cast<op::slice>(i->get_operator()); };
    auto&& axes    = get_slice(result.front()).axes;
    if(std::any_of(result.begin(), result.end(), [&](auto i) { return get_slice(i).axes != axes; }))
        return {};
    auto get_start = [&](auto& i) -> auto& { return get_slice(i).starts; };
    auto get_end   = [&](auto& i) -> auto& { return get_slice(i).ends; };
    std::sort(
        result.begin(), result.end(), [&](auto x, auto y) { return get_start(x) < get_start(y); });
    if(std::any_of(get_start(result.front()).begin(), get_start(result.front()).end(), [&](auto i) {
           return i != 0;
       }))
        return {};
    auto it = std::adjacent_find(
        result.begin(), result.end(), [&](auto x, auto y) { return get_end(x) != get_start(y); });
    if(it != result.end())
        return {};
    for(std::size_t i = 0; i < axes.size(); i++)
    {
        auto axis = axes[i];
        if(ins->get_shape().lens()[axis] != get_slice(result.back()).ends[i])
            return {};
    }
    return result;
}

struct find_splits
{
    auto matcher() const
    {
        return match::any(match::any_of[match::outputs()](match::name("slice")(
            match::any_of[match::outputs()](match::name("add", "mul", "relu")))));
    }

    static std::vector<std::vector<instruction_ref>>
    get_split_groups(const std::vector<instruction_ref>& splits)
    {
        std::vector<std::vector<instruction_ref>> groups;
        for(auto out : splits.front()->outputs())
        {
            if(out->name() == "slice")
                continue;
            std::vector<instruction_ref> group;
            for(auto split : splits)
            {
                auto it =
                    std::find_if(split->outputs().begin(), split->outputs().end(), [&](auto i) {
                        return i->get_operator() == out->get_operator();
                    });
                if(it == split->outputs().end())
                    break;
                assert((*it)->name() != "slice");
                // If there is a duplicate bail
                if(contains(group, *it))
                    return {};
                group.push_back(*it);
            }
            if(group.size() != splits.size())
                continue;
            groups.push_back(group);
        }
        return groups;
    }

    void apply(program& p, const match::matcher_result& r) const
    {
        auto ins = r.result;

        auto splits = get_splits(ins);
        if(splits.empty())
            return;
        for(const auto& group : get_split_groups(splits))
        {
            auto start = group.front();
            auto op    = start->get_operator();
            if(op.name() == "slice")
                continue;

            // Make sure there is no duplicates
            assert(std::none_of(
                std::next(group.begin()), group.end(), [&](auto i) { return i == start; }));

            auto split_idx    = 0;
            instruction_ref c = p.end();
            if(start->inputs().size() == 1)
            {
                c = p.insert_instruction(std::next(ins), op, ins);
            }
            else if(start->inputs().size() == 2)
            {
                assert(not std::none_of(start->inputs().begin(), start->inputs().end(), [](auto i) {
                    return i->name() == "slice";
                }) && "one argument must be a split");
                auto data_idx = 1;
                if(start->inputs().back()->name() == "slice")
                {
                    split_idx = 1;
                    data_idx  = 0;
                }

                std::vector<instruction_ref> data_args;
                std::transform(group.begin(),
                               group.end(),
                               std::back_inserter(data_args),
                               [&](auto i) { return i->inputs()[data_idx]; });

                // Data arguments must be a constant
                if(std::any_of(data_args.begin(), data_args.end(), [](auto i) {
                       return not i->can_eval();
                   }))
                    return;

                for(auto data : data_args)
                    p.move_instructions(data, ins);

                auto slice_op = any_cast<op::slice>(splits.front()->get_operator());
                assert(not slice_op.axes.empty());
                if(slice_op.axes.size() > 1)
                    return;
                auto concat_axis = slice_op.axes.front();
                // TODO: Check if axises match
                auto concat = p.insert_instruction(ins, op::concat{concat_axis}, data_args);

                std::vector<instruction_ref> args;
                args.resize(2);
                args[split_idx] = ins;
                args[data_idx]  = concat;
                c               = p.insert_instruction(std::next(ins), op, args);
            }
            if(c != p.end())
            {
                for(auto i : group)
                {
                    auto split = i->inputs()[split_idx];
                    assert(split->name() == "slice");
                    // Insert contiguous for reshapes
                    for(auto output : i->outputs())
                    {
                        if(not contains({"reshape", "squeeze", "unsqueeze"}, output->name()))
                            continue;
                        auto x = p.insert_instruction(output, op::contiguous{}, output->inputs());
                        p.replace_instruction(output, output->get_operator(), x);
                    }

                    p.replace_instruction(i, split->get_operator(), c);
                }
            }
        }
    }
};

struct find_split_concat
{
    auto matcher() const
    {
        return match::any(match::any_of[match::outputs()](
            match::name("slice")(match::all_of[match::outputs()](match::name("concat")))));
    }

    void apply(program& p, const match::matcher_result& r) const
    {
        auto ins = r.result;

        auto splits = get_splits(ins);
        if(splits.empty())
            return;
        if(std::any_of(
               splits.begin(), splits.end(), [](auto i) { return i->outputs().size() != 1; }))
            return;
        // Check for concat operator
        auto concat = splits.front()->outputs().front();
        if(std::any_of(splits.begin(), splits.end(), [&](auto i) {
               return i->outputs().front() != concat;
           }))
            return;
        // Check axis match
        auto concat_op = any_cast<op::concat>(concat->get_operator());
        auto split_op  = any_cast<op::slice>(splits.front()->get_operator());
        if(split_op.axes.size() != 1)
            return;
        if(split_op.axes.front() != concat_op.axis)
            return;
        // Replace args
        auto args = concat->inputs();
        auto it =
            std::find_if(args.begin(), args.end(), [&](auto i) { return i == splits.front(); });
        if(std::distance(it, args.end()) < splits.size())
            return;
456
457
458
459
460
461
462
        // If the slices are not in order then stop
        if(not std::is_sorted(it, it + splits.size(), [](instruction_ref x, instruction_ref y) {
               auto xop = any_cast<op::slice>(x->get_operator());
               auto yop = any_cast<op::slice>(y->get_operator());
               return std::tie(xop.starts, xop.ends) < std::tie(yop.starts, yop.ends);
           }))
            return;
463
464
465
466
467
468
469
470
471
472
        *it = splits.front()->inputs().front();
        args.erase(std::next(it), it + splits.size());

        if(args.size() == 1)
            p.replace_instruction(concat, args.front());
        else
            p.replace_instruction(concat, concat->get_operator(), args);
    }
};

473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
bool axis_equal(const std::vector<std::size_t>& x,
                const std::vector<std::size_t>& y,
                std::size_t axis)
{
    return x.size() == y.size() and x.size() > axis and
           std::equal(x.begin(), x.begin() + axis, y.begin()) and
           std::equal(x.begin() + axis + 1, x.end(), y.begin() + axis + 1);
}

bool axis_shape_equal(const shape& x, const shape& y, std::size_t axis)
{
    // TODO: Check strides
    return axis_equal(x.lens(), y.lens(), axis);
}

struct find_add_convs
{
    auto matcher() const
    {
        return match::name("add")(
            match::args(conv_const_weights().bind("a"), conv_const_weights().bind("b")));
    }

    static bool symmetrical_strides(const op::convolution& op)
    {
        return op.stride[0] == op.stride[1];
    }

    static std::size_t compute_stride_factor(const op::convolution& x, const op::convolution& y)
    {
        if(not symmetrical_strides(x))
            return 0;
        if(not symmetrical_strides(y))
            return 0;
        if((x.stride[0] % y.stride[0]) != 0)
            return 0;
        return x.stride[0] / y.stride[0];
    }

    static shape compute_stride_shape(const shape& input, std::size_t n)
    {
        return {input.type(),
515
516
517
518
                {input.lens()[0],
                 input.lens()[1],
                 std::size_t(std::max<std::ptrdiff_t>(1, (input.lens()[2] - 1) / n + 1)),
                 std::size_t(std::max<std::ptrdiff_t>(1, (input.lens()[3] - 1) / n + 1))},
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
                {input.strides()[0],
                 input.strides()[1],
                 input.strides()[2] * n,
                 input.strides()[3] * n}};
    }

    void apply(program& p, match::matcher_result r) const
    {
        auto ins       = r.result;
        auto a_conv    = r.instructions["a"];
        auto a_input   = a_conv->inputs().at(0);
        auto a_weights = a_conv->inputs().at(1);
        auto b_conv    = r.instructions["b"];
        auto b_input   = b_conv->inputs().at(0);
        auto b_weights = b_conv->inputs().at(1);

        if(not axis_shape_equal(a_weights->get_shape(), b_weights->get_shape(), 1))
            return;

        auto a_op   = any_cast<op::convolution>(a_conv->get_operator());
        auto b_op   = any_cast<op::convolution>(b_conv->get_operator());
        auto new_op = a_op;

        if(a_op != b_op)
        {
            if(std::tie(a_op.padding, a_op.dilation, a_op.group) ==
                   std::tie(b_op.padding, b_op.dilation, b_op.group) and
               a_weights->get_shape().lens()[2] == 1 and a_weights->get_shape().lens()[3] == 1)
            {
                if(a_op.stride < b_op.stride)
                {
                    auto n = compute_stride_factor(b_op, a_op);
                    if(n == 0)
                        return;
                    new_op  = a_op;
                    b_input = p.insert_instruction(
                        ins, op::as_shape{compute_stride_shape(b_input->get_shape(), n)}, b_input);
                }
                else if(b_op.stride < a_op.stride)
                {
                    auto n = compute_stride_factor(a_op, b_op);
                    if(n == 0)
                        return;
                    new_op  = b_op;
                    a_input = p.insert_instruction(
                        ins, op::as_shape{compute_stride_shape(a_input->get_shape(), n)}, a_input);
                }
                else
                    return;
            }
            else
                return;
        }

        auto concat_input   = p.insert_instruction(ins, op::concat{1}, a_input, b_input);
        auto concat_weights = p.insert_instruction(ins, op::concat{1}, a_weights, b_weights);
        p.replace_instruction(ins, new_op, concat_input, concat_weights);
    }
};

579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
MIGRAPHX_PRED_MATCHER(horiz_conv_dot, instruction_ref ins)
{
    auto pred = [&](auto name) {
        return [=](auto i) {
            return i->name() == name and i->inputs().front() == ins and
                   i->inputs().at(1)->can_eval();
        };
    };
    auto dots  = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("dot"));
    auto convs = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("convolution"));
    return !(dots < 2 and convs < 2);
}

struct find_conv_dot_horiz_fusion
{
    auto matcher() const { return horiz_conv_dot(); }

    void apply(program& p, const match::matcher_result& r) const
    {
        auto ins = r.result;

        auto pred = [](auto i, auto j) {
            if(i->get_operator() != j->get_operator())
                return false;
            if(not contains({"dot", "convolution"}, i->name()))
                return true;
            auto x = i->inputs()[1]->get_shape().lens();
            auto y = j->inputs()[1]->get_shape().lens();
            if(x.size() != y.size())
                return false;
            // Check that non-axises match
            int axis = 1;
            if(i->name() == "dot")
            {
                axis = x.size() - 1;
            }
            return axis_equal(x, y, axis);
        };

        auto each = [&](auto start, auto last) {
            if(std::distance(start, last) < 2)
                return;
            auto&& name = (*start)->name();
            if(not contains({"dot", "convolution"}, name))
                return;
624
625
626
627
628
629
630
            auto op   = (*start)->get_operator();
            int group = 1;
            if(name == "convolution")
                group = any_cast<op::convolution>(op).group;
            // Skip group convolution
            if(group != 1)
                return;
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
            auto input = (*start)->inputs().front();
            std::vector<instruction_ref> args;
            std::transform(
                start, last, std::back_inserter(args), [&](auto x) { return x->inputs().at(1); });
            int axis        = 1;
            int concat_axis = 0;
            if(name == "dot")
            {
                axis        = int(args.front()->get_shape().lens().size() - 1);
                concat_axis = axis;
            }

            for(auto arg : args)
                p.move_instructions(arg, input);
            // TODO: Check if axises match
646
647
            auto concat    = p.insert_instruction(input, op::concat{concat_axis}, args);
            auto fused     = p.insert_instruction(std::next(input), op, input, concat);
648
649
650
651
652
653
654
655
656
657
658
659
660
661
            int64_t offset = 0;
            for(auto arg : range(start, last))
            {
                int64_t len = arg->get_shape().lens()[axis];
                p.replace_instruction(arg, op::slice{{axis}, {offset}, {offset + len}}, fused);
                offset += len;
            }
        };

        auto outputs = ins->outputs();
        group_by(outputs.begin(), outputs.end(), each, pred);
    }
};

662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
struct find_div_const
{
    auto matcher() const
    {
        return match::name("div")(match::arg(1)(match::is_constant().bind("c")));
    }

    void apply(program& p, match::matcher_result r) const
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

        auto recip = p.insert_instruction(std::next(c_ins), op::recip{}, c_ins);

        auto args = ins->inputs();

        p.replace_instruction(ins, op::mul{}, args.front(), recip);
    }
};

struct find_sub_const
{
    auto matcher() const
    {
        return match::name("sub")(match::arg(1)(match::is_constant().bind("c")));
    }

    void apply(program& p, match::matcher_result r) const
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

        auto neg = p.insert_instruction(std::next(c_ins), op::neg{}, c_ins);

        auto args = ins->inputs();

        p.replace_instruction(ins, op::add{}, args.front(), neg);
    }
};

kahmed10's avatar
kahmed10 committed
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
struct find_rsqrt
{
    auto matcher() const
    {
        return match::name("recip")(match::args(
            match::name("sqrt")(match::used_once(), match::args(match::any().bind("x")))));
    }

    void apply(program& p, match::matcher_result r) const
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];

        p.replace_instruction(ins, op::rsqrt{}, x_ins);
    }
};

719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
static bool same_ops(const std::vector<instruction_ref>& vec_ins)
{
    return std::all_of(vec_ins.begin(), vec_ins.end(), [&](auto i) {
        return i->get_operator() == vec_ins.front()->get_operator();
    });
}

struct find_split_reshape
{
    auto matcher() const
    {
        return match::name("reshape")(match::arg(0)(match::name("contiguous")(
                                          match::arg(0)(match::name("slice").bind("slice")))))
            .bind("reshape");
    }

    void apply(program& p, match::matcher_result r) const
    {
        auto slc = r.instructions["slice"];
        auto rsp = r.instructions["reshape"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_rsp(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_rsp.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            auto cont = i->outputs().front();
            assert(cont->outputs().size() == 1);
            return cont->outputs().front();
        });

        // all outputs are reshape and of the same shape
        auto dims = any_cast<op::reshape>(rsp->get_operator()).dims;
        if(!same_ops(vec_rsp))
        {
            return;
        }

        // ensure reshape happens after the axis dimension
        auto axis    = any_cast<op::slice>(slc->get_operator()).axes[0];
        auto in_lens = input->get_shape().lens();
        if(!std::equal(in_lens.begin(), in_lens.begin() + axis, dims.begin(), dims.begin() + axis))
        {
            return;
        }

        // calculate reshape output shape
        auto tmp_lens = vec_rsp.front()->get_shape().lens();
        std::vector<int64_t> rsp_lens(tmp_lens.begin(), tmp_lens.end());
        int64_t dim_size = rsp_lens[axis];
        rsp_lens[axis] *= vec_rsp.size();

        // insert the reshape instruction
        auto rsp_ins = p.insert_instruction(std::next(input), op::reshape{rsp_lens}, input);

        // replace the original reshape with slice
        int64_t i = 0;
        for(auto in : vec_rsp)
        {
            p.replace_instruction(
                in, op::slice{{axis}, {i * dim_size}, {(i + 1) * dim_size}}, rsp_ins);
            ++i;
        }
    }
};

struct find_split_transpose
{
    auto matcher() const
    {
        return match::name("transpose")(match::arg(0)(match::name("slice").bind("slice")))
            .bind("trans");
    }

    void apply(program& p, match::matcher_result r) const
    {
        auto slc   = r.instructions["slice"];
        auto trans = r.instructions["trans"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_trans(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_trans.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            return i->outputs().front();
        });

        // all transpose are the same
        auto perm = any_cast<op::transpose>(trans->get_operator()).dims;
        if(!same_ops(vec_trans))
        {
            return;
        }

        // insert an transpose instruction
        auto tr = p.insert_instruction(std::next(input), op::transpose{perm}, input);

        // compute the axis in the slice
        auto axis = any_cast<op::slice>(slc->get_operator()).axes.front();
        auto it   = std::find(perm.begin(), perm.end(), axis);
        assert(it != perm.end());
        auto axis_new = static_cast<int64_t>(std::distance(perm.begin(), it));

        for(auto in : split_outputs)
        {
            auto oper    = any_cast<op::slice>(in->get_operator());
            auto starts  = oper.starts;
            auto ends    = oper.ends;
            auto tr_orig = in->outputs().front();
            p.replace_instruction(tr_orig, op::slice{{axis_new}, starts, ends}, tr);
        }
    }
};

Paul's avatar
Paul committed
843
844
void simplify_algebra::apply(program& p) const
{
Paul's avatar
Paul committed
845
    // Run simplifications multiple times
846
    for(int i = 0; i < 8; i++)
Paul's avatar
Paul committed
847
    {
Paul's avatar
Paul committed
848
        match::find_matches(p,
Paul's avatar
Paul committed
849
                            find_inner_broadcast{},
Paul's avatar
Paul committed
850
851
                            find_double_add_lit_broadcast{},
                            find_add_lit_broadcast{},
852
                            find_add_convs{},
853
                            find_conv_dot_horiz_fusion{},
Paul's avatar
Paul committed
854
                            find_mul_conv{},
855
                            find_mul_add{},
856
857
                            find_div_const{},
                            find_sub_const{},
kahmed10's avatar
kahmed10 committed
858
                            find_rsqrt{},
859
                            find_concat_op{},
860
                            find_split_concat{},
861
862
863
                            find_splits{},
                            find_split_reshape{},
                            find_split_transpose{});
Paul's avatar
Paul committed
864
865
        dead_code_elimination{}.apply(p);
    }
Paul's avatar
Paul committed
866
}
Paul's avatar
Paul committed
867

Paul's avatar
Paul committed
868
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
869
} // namespace migraphx