simplify_reshapes.cpp 28.8 KB
Newer Older
1
2
3
/*
 * The MIT License (MIT)
 *
4
 * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
24
#include <iterator>
Paul's avatar
Paul committed
25
26
27
#include <migraphx/simplify_reshapes.hpp>
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
28
#include <migraphx/op/as_shape.hpp>
29
#include <migraphx/op/transpose.hpp>
Paul's avatar
Paul committed
30
#include <migraphx/op/concat.hpp>
31
#include <migraphx/op/slice.hpp>
Paul's avatar
Paul committed
32
33
#include <migraphx/iterator_for.hpp>
#include <migraphx/ranges.hpp>
Paul's avatar
Paul committed
34
#include <migraphx/matcher.hpp>
35
#include <migraphx/permutation.hpp>
36
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
37
#include <unordered_set>
38
#include <migraphx/make_op.hpp>
39
#include <migraphx/tune_axis.hpp>
40

41
#include <map>
Paul's avatar
Paul committed
42

Paul's avatar
Paul committed
43
namespace migraphx {
Paul's avatar
Paul committed
44
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
45

Paul's avatar
Paul committed
46
const auto& reshaper_names()
Paul's avatar
Paul committed
47
{
48
49
    // clang-format off
    static const std::unordered_set<std::string> names = {
50
        "flatten",
51
        "reshape",
52
53
54
        "contiguous",
        "squeeze",
        "unsqueeze"
55
56
    };
    // clang-format on
Paul's avatar
Paul committed
57
    return names;
Paul's avatar
Paul committed
58
59
}

Paul's avatar
Paul committed
60
bool is_reshaper(instruction_ref ins) { return contains(reshaper_names(), ins->name()); }
Paul's avatar
Paul committed
61
62
63

instruction_ref find_transpose_input(instruction_ref ins)
{
Paul's avatar
Paul committed
64
    if(ins->inputs().size() != 1)
Paul's avatar
Paul committed
65
        return ins;
Paul's avatar
Paul committed
66
    if(ins->inputs().front()->name() == "contiguous")
Paul's avatar
Paul committed
67
68
69
70
        return find_transpose_input(ins->inputs().front());
    if(ins->inputs().front()->name() == "transpose")
        return ins->inputs().front();
    return ins;
Paul's avatar
Paul committed
71
72
}

73
74
75
76
77
78
79
auto get_transpose_dims(instruction_ref ins)
{
    return any_cast<const op::transpose&>(ins->get_operator()).dims;
}

bool is_no_transpose(const std::vector<int64_t>& dims)
{
Paul's avatar
Paul committed
80
    if(dims.empty())
81
        return true;
Paul's avatar
Paul committed
82
    if(dims.front() != 0)
83
        return false;
Paul's avatar
Paul committed
84
85
    return std::adjacent_find(
               dims.begin(), dims.end(), [](auto x, auto y) { return (y - x) != 1; }) == dims.end();
86
87
}

Paul's avatar
Paul committed
88
struct find_reshaper
Paul's avatar
Paul committed
89
{
Paul's avatar
Paul committed
90
    auto matcher() const
Paul's avatar
Paul committed
91
    {
92
93
94
95
96
97
        auto reshaper          = match::name(reshaper_names());
        auto contiguous        = match::name("contiguous");
        auto no_output_reshape = match::none_of[match::outputs()](reshaper);
        auto input_reshape     = match::arg(0)(match::skip(contiguous)(reshaper));
        auto input             = match::skip(reshaper, contiguous)(match::any().bind("x"));
        return reshaper(no_output_reshape, input_reshape, input);
Paul's avatar
Paul committed
98
99
    }

100
    void apply(module& m, const match::matcher_result& mr) const
Paul's avatar
Paul committed
101
    {
102
103
104
        auto ins   = mr.result;
        auto input = mr.instructions["x"];
        auto dims  = ins->get_shape().lens();
Paul's avatar
Paul committed
105

106
        m.replace_instruction(ins, make_op("reshape", {{"dims", dims}}), input);
Paul's avatar
Paul committed
107
108
109
    }
};

Paul's avatar
Paul committed
110
111
112
113
114
struct find_nop_reshapes
{
    auto matcher() const
    {
        auto reshapes = reshaper_names();
115
116
117
        reshapes.insert("as_shape");
        reshapes.insert("broadcast");
        reshapes.insert("concat");
Paul Fultz II's avatar
Paul Fultz II committed
118
        reshapes.insert("convert");
119
120
        reshapes.insert("multibroadcast");
        reshapes.insert("pad");
Paul's avatar
Paul committed
121
        reshapes.insert("slice");
122
        reshapes.insert("transpose");
123
124
125
126
127
        reshapes.insert("reduce_mean");
        reshapes.insert("reduce_max");
        reshapes.insert("reduce_min");
        reshapes.insert("reduce_sum");
        reshapes.insert("reduce_prod");
Paul's avatar
Paul committed
128
        return match::name(reshapes)(match::same_shape(match::arg(0)));
Paul's avatar
Paul committed
129
130
    }

131
    void apply(module& m, const match::matcher_result& mr) const
Paul's avatar
Paul committed
132
133
    {
        auto ins = mr.result;
134
        m.replace_instruction(ins, ins->inputs().front());
Paul's avatar
Paul committed
135
136
137
    }
};

Paul's avatar
Paul committed
138
139
140
141
struct find_transpose
{
    auto matcher() const
    {
142
143
144
145
146
        auto output_not_transpose =
            match::none_of(match::skip_output(match::name("contiguous"))(match::name("transpose")));
        auto input_has_transpose =
            match::args(match::skip(match::name("contiguous"))(match::name("transpose")));
        return match::name("transpose")(output_not_transpose, input_has_transpose);
Paul's avatar
Paul committed
147
148
    }

149
    void apply(module& m, const match::matcher_result& mr) const
Paul's avatar
Paul committed
150
151
    {
        auto ins = mr.result;
Paul's avatar
Paul committed
152
153
        auto x   = ins;
        auto t   = ins;
Paul's avatar
Paul committed
154
155
156
157
158
159
160
161
162
163
164
165
        std::vector<std::int64_t> dims(ins->get_shape().lens().size());
        std::iota(dims.begin(), dims.end(), 0);
        do
        {
            dims = reorder_dims(get_transpose_dims(t), dims);
            x    = t;
            t    = find_transpose_input(x);
        } while(x != t and t->name() == "transpose");
        if(t == ins or t->name() != "transpose")
            return;
        if(is_no_transpose(dims))
        {
166
            m.replace_instruction(ins, t->inputs().front());
Paul's avatar
Paul committed
167
168
        }
        else
Paul's avatar
Paul committed
169
        {
170
            m.replace_instruction(
171
                ins, make_op("transpose", {{"permutation", dims}}), t->inputs().front());
Paul's avatar
Paul committed
172
        }
Paul's avatar
Paul committed
173
    }
Paul's avatar
Paul committed
174
175
};

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
struct find_nested_slice
{
    auto matcher() const { return match::name("slice")(match::arg(0)(match::name("slice"))); }

    using axes_map = std::map<std::size_t, std::pair<std::size_t, std::size_t>>;

    static axes_map get_axes(instruction_ref ins)
    {
        axes_map result;
        auto op = any_cast<op::slice>(ins->get_operator());
        for(std::size_t i = 0; i < op.axes.size(); i++)
        {
            result[op.axes[i]] = std::make_pair(op.starts[i], op.ends[i]);
        }
        return result;
    }

    static axes_map merge(const axes_map& m1, const axes_map& m2)
    {
        axes_map result;
        // Non overlapping
        for(auto&& p : m1)
        {
            if(contains(m2, p.first))
                continue;
            result[p.first] = p.second;
        }
        for(auto&& p : m2)
        {
            if(contains(m1, p.first))
                continue;
            result[p.first] = p.second;
        }
        // Overlapping
        for(auto&& p1 : m1)
        {
            if(not contains(m2, p1.first))
                continue;
            auto&& v1        = p1.second;
            auto&& v2        = m2.at(p1.first);
            auto start       = v1.first + v2.first;
            auto end         = start + (v2.second - v2.first);
            result[p1.first] = std::make_pair(start, end);
        }
        return result;
    }

223
    void apply(module& m, const match::matcher_result& mr) const
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
    {
        auto ins   = mr.result;
        auto slice = ins->inputs().front();
        auto input = slice->inputs().front();

        auto a1 = get_axes(ins);
        auto a2 = get_axes(slice);

        auto axes = merge(a2, a1);

        auto op = op::slice{};
        for(auto&& pp : axes)
        {
            op.axes.push_back(pp.first);
            op.starts.push_back(pp.second.first);
            op.ends.push_back(pp.second.second);
        }
241
        m.replace_instruction(ins, op, input);
242
243
244
    }
};

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
struct find_concat_multibroadcasts
{
    auto matcher() const
    {
        return match::name("concat")(match::all_of[match::inputs()](match::name("multibroadcast")));
    }

    void apply(module& m, const match::matcher_result& mr) const
    {
        auto ins        = mr.result;
        auto op         = any_cast<op::concat>(ins->get_operator());
        auto out_lens   = ins->get_shape().lens();
        auto inputs     = ins->inputs();
        auto in_strides = inputs.front()->get_shape().strides();

        // Only apply when concat axis is not a broadcasted dimension
        if(std::any_of(inputs.begin(), inputs.end(), [&](auto i) {
               return i->get_shape().strides()[op.axis] == 0;
           }))
        {
            return;
        }

        // Use inputs of multibroadcast ops as inputs to new concat op
        std::transform(inputs.begin(), inputs.end(), inputs.begin(), [](auto i) {
            return i->inputs().front();
        });

        // Reduce axis by number of leading broadcasted dimensions
        if(inputs.front()->get_shape().lens().size() < out_lens.size())
            op.axis -= std::count(in_strides.begin(), in_strides.begin() + op.axis, 0);

        auto concat = m.insert_instruction(ins, op, inputs);
        m.replace_instruction(
            ins, migraphx::make_op("multibroadcast", {{"out_lens", out_lens}}), concat);
    }
};

Paul's avatar
Paul committed
283
284
285
286
struct find_concat_transpose
{
    auto matcher() const
    {
287
        return match::name("concat")(match::all_of[match::inputs()](match::name("transpose")));
Paul's avatar
Paul committed
288
289
    }

290
    void apply(module& m, const match::matcher_result& mr) const
Paul's avatar
Paul committed
291
    {
Shucai Xiao's avatar
Shucai Xiao committed
292
293
294
        auto ins          = mr.result;
        auto trans_inputs = ins->inputs();
        auto s            = trans_inputs.front()->get_shape();
Paul's avatar
Paul committed
295
        assert(s.transposed());
Shucai Xiao's avatar
Shucai Xiao committed
296
297
298
299
        auto op          = any_cast<op::concat>(ins->get_operator());
        auto permutation = find_permutation(s);

        // permutation should be the same for all inputs
300
        if(not std::all_of(trans_inputs.begin(), trans_inputs.end(), [&](auto in) {
Shucai Xiao's avatar
Shucai Xiao committed
301
302
303
304
305
306
307
308
               return (find_permutation(in->get_shape()) == permutation);
           }))
        {
            return;
        }

        // axis could be a negative value
        int64_t n_dim = static_cast<int64_t>(s.lens().size());
309
        op.axis       = tune_axis(n_dim, op.axis, op.name());
Shucai Xiao's avatar
Shucai Xiao committed
310

Paul's avatar
Paul committed
311
        auto ipermutation = invert_permutation(permutation);
Paul's avatar
Paul committed
312
        op.axis           = ipermutation[op.axis];
Paul's avatar
Paul committed
313
314
315

        std::vector<instruction_ref> inputs;
        std::transform(
Paul's avatar
Paul committed
316
            ins->inputs().begin(), ins->inputs().end(), std::back_inserter(inputs), [&](auto i) {
317
                return m.insert_instruction(
318
                    ins, make_op("transpose", {{"permutation", permutation}}), i);
Paul's avatar
Paul committed
319
            });
320
321
        auto concat = m.insert_instruction(ins, op, inputs);
        auto t      = m.insert_instruction(
322
            ins, make_op("transpose", {{"permutation", ipermutation}}), concat);
Paul's avatar
Paul committed
323
        assert(ins->get_shape().lens() == t->get_shape().lens());
324
        m.replace_instruction(ins, t);
Paul's avatar
Paul committed
325
326
327
    }
};

Paul Fultz II's avatar
Paul Fultz II committed
328
329
330
331
332
333
334
335
336
337
338
339
340
struct find_nested_concat
{
    auto matcher() const
    {
        return match::name("concat")(match::any_of[match::inputs()](match::name("concat")));
    }

    static std::size_t get_axis(instruction_ref ins)
    {
        auto op = any_cast<op::concat>(ins->get_operator());
        return op.axis;
    }

341
    void apply(module& m, const match::matcher_result& mr) const
Paul Fultz II's avatar
Paul Fultz II committed
342
343
344
345
346
347
348
349
350
351
352
353
354
    {
        auto ins  = mr.result;
        auto axis = get_axis(ins);
        std::vector<instruction_ref> args;
        fix([&](auto self, auto&& inputs) {
            for(auto&& i : inputs)
            {
                if(i->name() == "concat" and get_axis(i) == axis and i->outputs().size() == 1)
                    self(i->inputs());
                else
                    args.push_back(i);
            }
        })(ins->inputs());
355
        m.replace_instruction(ins, ins->get_operator(), args);
Paul Fultz II's avatar
Paul Fultz II committed
356
357
358
    }
};

359
360
361
362
363
364
365
366
struct find_resize
{
    auto matcher() const
    {
        return match::name("gather")(
            match::args(match::name("reshape").bind("data"), match::is_constant().bind("ind")));
    }

367
    void apply(module& m, const match::matcher_result& r) const
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
    {
        auto ins     = r.result;
        auto ins_rsp = r.instructions["data"];
        auto ins_ind = r.instructions["ind"];

        // resize input shape
        if(ins_rsp->get_shape().lens().size() != 1)
        {
            return;
        }

        // resize output shape
        const auto& in_shape  = ins_rsp->inputs().front()->get_shape();
        const auto& out_shape = ins->get_shape();
        // check if output shape is multiple of input shape
        const auto& in_lens  = in_shape.lens();
        const auto& out_lens = out_shape.lens();
        if(in_lens.size() != out_lens.size())
        {
            return;
        }

        // output shape must be multiple of input shape
        std::vector<bool> is_multi(in_lens.size());
        std::transform(
            in_lens.begin(), in_lens.end(), out_lens.begin(), is_multi.begin(), [](auto x, auto y) {
                return (y % x == 0);
            });
        if(not std::all_of(is_multi.begin(), is_multi.end(), [](auto b) { return b; }))
        {
            return;
        }

        // output must be multiple of inputs
        std::vector<std::size_t> scales(in_lens.size());
        std::transform(
            in_lens.begin(), in_lens.end(), out_lens.begin(), scales.begin(), [](auto x, auto y) {
                return y / x;
            });

        // if ind is not constant, cannot optimize
        std::vector<int> vec_ind;
        auto arg_ind = ins_ind->eval();
        if(arg_ind.empty())
        {
            return;
        }
        arg_ind.visit([&](auto v) { vec_ind.assign(v.begin(), v.end()); });
416
        if(not all_of(range(out_shape.elements()), [&](auto i) {
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
               auto out_idx = out_shape.multi(i);
               auto in_idx  = out_idx;
               std::transform(out_idx.begin(),
                              out_idx.end(),
                              scales.begin(),
                              in_idx.begin(),
                              [&](auto io, auto scale) { return io - (io % scale); });
               return vec_ind[i] == vec_ind[out_shape.index(in_idx)];
           }))
        {
            return;
        }

        // wrap up shapes for multibroadcast
        std::vector<std::pair<std::size_t, std::size_t>> dim_scales;
        std::transform(in_lens.begin(),
                       in_lens.end(),
                       out_lens.begin(),
                       std::back_inserter(dim_scales),
                       [](auto x, auto y) { return std::make_pair(x, y / x); });

        std::vector<int64_t> in_dims;
        std::vector<int64_t> out_dims;
        for(auto& isp : dim_scales)
        {
            in_dims.push_back(isp.first);
            out_dims.push_back(isp.first * isp.second);
            if(isp.first == 1 or isp.second == 1)
            {
                continue;
            }

            out_dims.back() = isp.first;
            in_dims.push_back(1);
            out_dims.push_back(isp.second);
        }

        auto in_rsp   = ins_rsp->inputs().front();
455
        auto rsp_data = m.insert_instruction(
456
            ins_rsp, migraphx::make_op("reshape", {{"dims", in_dims}}), in_rsp);
457
        auto mb_rsp = m.insert_instruction(
458
            ins_rsp, migraphx::make_op("multibroadcast", {{"out_lens", out_dims}}), rsp_data);
459
        std::vector<int64_t> rsp_dims(out_lens.begin(), out_lens.end());
460
        m.replace_instruction(ins, migraphx::make_op("reshape", {{"dims", rsp_dims}}), mb_rsp);
461
462
463
464
465
466
467
468
469
470
471
472
    }
};

struct find_where_op
{
    auto matcher() const
    {
        return match::name("gather")(
            match::args(match::name("reshape")(match::arg(0)(match::name("concat").bind("data"))),
                        match::is_constant().bind("ind")));
    }

473
    void apply(module& m, const match::matcher_result& r) const
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
    {
        auto ins     = r.result;
        auto concat  = r.instructions["data"];
        auto ins_ind = r.instructions["ind"];
        std::vector<bool> vec_ind;
        auto arg_ind = ins_ind->eval();
        arg_ind.visit([&](auto v) { vec_ind.assign(v.begin(), v.end()); });
        // ind has to be the same value
        auto val = vec_ind.front();
        if(not std::all_of(vec_ind.begin(), vec_ind.end(), [&](auto v) { return (v == val); }))
        {
            return;
        }

        // concat axis must be 0
        auto op = any_cast<op::concat>(concat->get_operator());
        if(op.axis != 0)
        {
            return;
        }

        // check concat inputs, it has to be 2 and have the same shape
        const auto& inputs = concat->inputs();
        if(inputs.size() != 2)
        {
            return;
        }
        if(inputs.at(0)->get_shape() != inputs.at(1)->get_shape())
        {
            return;
        }
        if(inputs.at(0)->get_shape().lens() != ins_ind->get_shape().lens())
        {
            return;
        }

        if(val)
        {
512
            m.replace_instruction(ins, inputs.at(0));
513
514
515
        }
        else
        {
516
            m.replace_instruction(ins, inputs.at(1));
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
        }
    }
};

struct find_reshape_cont
{
    auto matcher() const
    {
        return match::pointwise(
            match::nargs(2),
            match::either_arg(0, 1)(
                match::name("reshape")(match::args(match::name("contiguous").bind("cont")))
                    .bind("rsp"),
                match::any()));
    }

533
    void apply(module& m, const match::matcher_result& r) const
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
    {
        auto ins      = r.result;
        auto ins_cont = r.instructions["cont"];
        auto in_ins   = r.instructions["rsp"];

        auto cont_input = ins_cont->inputs().front();
        auto lens       = cont_input->get_shape().lens();
        std::vector<int64_t> dims(lens.begin(), lens.end());

        if(in_ins->get_shape() != ins->get_shape())
        {
            return;
        }

        if(not std::all_of(ins->inputs().begin(), ins->inputs().end(), [](auto i) {
               return i->get_shape().standard();
           }))
        {
            return;
        }

        auto out_lens = ins->get_shape().lens();
        std::vector<int64_t> out_dims(out_lens.begin(), out_lens.end());
        std::vector<instruction_ref> inputs;
        for(const auto& in : ins->inputs())
        {
            if(in == in_ins)
            {
                inputs.push_back(cont_input);
            }
            else
            {
                inputs.push_back(
567
                    m.insert_instruction(ins, make_op("reshape", {{"dims", dims}}), in));
568
569
            }
        }
570
571
        auto out = m.insert_instruction(ins, ins->get_operator(), inputs);
        m.replace_instruction(ins, make_op("reshape", {{"dims", out_dims}}), out);
572
573
574
    }
};

575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
// match sequence of transpose --> contiguous --> reshaper_op
auto match_transpose_contiguous_reshaper()
{
    return match::name({"reshape", "squeeze", "unsqueeze"})(
               match::used_once(),
               match::args(
                   match::name("contiguous")(
                       match::used_once(), match::args(match::transpose_shape().bind("trans_ins")))
                       .bind("cont_ins")))
        .bind("reshaper_ins");
};

// finds the pattern of transpose --> contiguous --> reshaper_op --> unary
// application of this matcher moves the unary operation before the contiguous so it becomes
// transpose --> unary --> contiguous --> reshaper_op. later pointwise sub-module can be created out
// of unary --> contiguous --> reshaper_op. Such pattern appears in depthToSpace or spaceToDepth
// operator.
struct find_transpose_contiguous_reshaper_unary
{
    auto matcher() const
    {
596
597
598
        return pointwise(match::used_once(),
                         match::nargs(1),
                         match::args(match_transpose_contiguous_reshaper()));
599
600
    }

601
    void apply(module& m, const match::matcher_result& r) const
602
603
604
605
606
607
    {
        auto ins           = r.result;
        auto reshaper_ins  = r.instructions["reshaper_ins"];
        auto trans_ins     = r.instructions["trans_ins"];
        auto cont_ins      = r.instructions["cont_ins"];
        auto unary_op_name = ins->get_operator().name();
608
        auto unary_ins     = m.insert_instruction(cont_ins, make_op(unary_op_name), trans_ins);
609
        // older cont and reshape are removed by deadcode elimination
610
        m.replace_instruction(ins, reshaper_ins->get_operator(), unary_ins);
611
612
613
    }
};

614
615
616
// simplifies broadcast->transpose to transpose->broadcast
// in the case of a scalar, simply rewrite to broadcast
// this can allow for further optimizations with find_inner_broadcast() in simplify_algebra.cpp
617
618
619
620
621
622
623
624
625
626
struct find_broadcast_transpose
{
    auto matcher() const
    {
        return match::name("transpose")(
            match::arg(0)(match::name("multibroadcast").bind("bcast_ins")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
627
628
        auto transpose      = r.result;
        auto transpose_lens = transpose->get_shape().lens();
Charlie Lin's avatar
Charlie Lin committed
629
630
        auto bcast_ins      = r.instructions["bcast_ins"];
        auto input          = bcast_ins->inputs().front();
631
        // scalar transformation does not need extra transpose
632
        if(not input->get_shape().scalar())
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
        {
            // find common shape
            auto in_lens  = input->get_shape().lens();
            int lens_diff = transpose_lens.size() - in_lens.size();
            // insert unsqueeze if input lens < transpose lens
            if(lens_diff > 0)
            {
                std::vector<size_t> unsqueeze_axes(lens_diff);
                std::iota(unsqueeze_axes.begin(), unsqueeze_axes.end(), 0);
                input = m.insert_instruction(
                    bcast_ins, make_op("unsqueeze", {{"axes", unsqueeze_axes}}), input);
            }
            // apply transpose before the multibroadcast
            input = m.insert_instruction(bcast_ins, transpose->get_operator(), input);
        }
648
        auto new_mbcast = m.insert_instruction(
649
650
            bcast_ins, make_op("multibroadcast", {{"out_lens", transpose_lens}}), input);
        m.replace_instruction(transpose, new_mbcast);
651
652
653
    }
};

654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
struct find_slice_transpose
{
    auto matcher() const
    {
        return match::any(match::any_of[match::outputs()](
            match::name("slice")(match::output(match::name("transpose")))));
    }

    static std::vector<int64_t> find_common_perm(const std::vector<instruction_ref>& transposes)
    {
        std::map<std::vector<int64_t>, int64_t> count;
        for(auto t : transposes)
        {
            auto perm = t->get_operator().to_value()["permutation"].to_vector<int64_t>();
            count[perm]++;
        }
        return std::max_element(
                   count.begin(), count.end(), by(std::less<>{}, [](auto&& p) { return p.second; }))
            ->first;
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins = r.result;
        std::vector<instruction_ref> splits;
        std::copy_if(ins->outputs().begin(),
                     ins->outputs().end(),
                     std::back_inserter(splits),
                     [&](instruction_ref out) {
                         return out->name() == "slice" and out->outputs().size() == 1 and
                                out->outputs().front()->name() == "transpose";
                     });
        if(splits.size() < 2)
            return;
        std::vector<instruction_ref> transposes;
        std::transform(splits.begin(),
                       splits.end(),
                       std::back_inserter(transposes),
                       [](auto split) { return split->outputs().front(); });
        auto perm  = find_common_perm(transposes);
        auto iperm = invert_permutation(perm);
        auto pre   = m.insert_instruction(
            std::next(ins), make_op("transpose", {{"permutation", perm}}), ins);
        for(auto i : range(transposes.size()))
        {
            auto split = splits[i];
            auto t     = transposes[i];
            auto op    = any_cast<op::slice>(split->get_operator());
            std::transform(op.axes.begin(), op.axes.end(), op.axes.begin(), [&](auto axis) {
                return iperm[axis];
            });
            auto new_ins = m.insert_instruction(t, op, pre);
            if(t->get_operator() != pre->get_operator())
            {
                auto curr = t->get_operator().to_value()["permutation"].to_vector<int64_t>();
                new_ins   = m.insert_instruction(
                    t, make_op("transpose", {{"permutation", reorder_dims(iperm, curr)}}), new_ins);
            }
            m.replace_instruction(t, new_ins);
        }
    }
};

717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
struct find_transpose_slice
{
    auto matcher() const
    {
        return match::name("transpose")(match::all_of[match::outputs()](match::name("slice")));
    }

    static std::vector<int64_t> slice_distance(const op::slice& op)
    {
        assert(op.starts.size() == op.ends.size());
        std::vector<int64_t> result(op.starts.size());
        std::transform(
            op.ends.begin(), op.ends.end(), op.starts.begin(), result.begin(), std::minus<>{});
        return result;
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins    = r.result;
        auto slices = ins->outputs();
        if(slices.empty())
            return;
        auto slice     = any_cast<op::slice>(slices.front()->get_operator());
        auto sdistance = slice_distance(slice);
        // Check all distances and axes are the same
        if(std::any_of(slices.begin(), slices.end(), [&](auto sins) {
               auto s = any_cast<op::slice>(sins->get_operator());
               return s.axes != slice.axes or slice_distance(s) != sdistance;
           }))
            return;
        // Check distances are divisible by lens of corresponding axes
        auto mod_by_distance = [&](const auto& v, auto f) {
            return std::inner_product(v.begin(),
                                      v.end(),
                                      sdistance.begin(),
                                      0,
                                      std::plus<>{},
                                      [&](auto x, auto d) -> uint64_t {
                                          if(d == 0)
                                              return 1;
                                          return f(x) % d;
                                      });
        };
        if(mod_by_distance(slice.axes, [&](auto x) { return ins->get_shape().lens()[x]; }) != 0 or
           mod_by_distance(slice.starts, id{}) != 0 or mod_by_distance(slice.ends, id{}) != 0)
            return;
        // TODO: Handle multiple axes
        if(sdistance.size() != 1)
            return;
        auto axis = slice.axes.front();
        // Skip if axis would be packed
        if(std::all_of(ins->get_shape().lens().begin(),
                       ins->get_shape().lens().begin() + axis,
                       [](auto x) { return x == 1; }))
            return;
        // Compute axis before transpose to use for unsqueeze
        auto perm    = ins->get_operator().to_value()["permutation"].to_vector<int64_t>();
774
        auto preaxis = perm[axis];
shivadbhavsar's avatar
shivadbhavsar committed
775
776
777
778
779
780
781
782
        // Make unsqueeze
        std::vector<int64_t> steps(sdistance.size());
        std::transform(
            slice.axes.begin(),
            slice.axes.end(),
            sdistance.begin(),
            steps.begin(),
            [&](const auto ax, const auto sdis) { return ins->get_shape().lens().at(ax) / sdis; });
783
        auto unsqueeze = m.insert_instruction(
shivadbhavsar's avatar
shivadbhavsar committed
784
            ins, make_op("unsqueeze", {{"axes", {preaxis}}, {"steps", steps}}), ins->inputs());
785
786
        // Make transpose
        std::transform(perm.begin(), perm.end(), perm.begin(), [&](auto i) {
shivadbhavsar's avatar
shivadbhavsar committed
787
            if(i >= preaxis)
788
789
790
                return i + 1;
            return i;
        });
shivadbhavsar's avatar
shivadbhavsar committed
791
        perm.insert(perm.begin(), preaxis);
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
        auto transpose =
            m.insert_instruction(ins, make_op("transpose", {{"permutation", perm}}), unsqueeze);
        // Slice and squeeze
        for(auto s : slices)
        {
            auto op        = any_cast<op::slice>(s->get_operator());
            op.axes        = {0};
            op.starts      = {op.starts.front() / sdistance.front()};
            op.ends        = {op.ends.front() / sdistance.front()};
            auto slice_ins = m.insert_instruction(ins, op, transpose);
            auto squeeze =
                m.insert_instruction(ins, make_op("squeeze", {{"axes", {0}}}), slice_ins);
            m.replace_instruction(s, squeeze);
        }
    }
};

809
void simplify_reshapes::apply(module& m) const
Paul's avatar
Paul committed
810
{
811
    for(int i = 0; i < depth; i++)
Paul's avatar
Paul committed
812
    {
813
        match::find_matches(m,
814
815
                            find_where_op{},
                            find_resize{},
816
817
                            find_nop_reshapes{},
                            find_reshaper{},
818
                            find_reshape_cont{},
819
820
                            find_transpose{},
                            find_concat_transpose{},
821
                            find_concat_multibroadcasts{},
822
                            find_nested_slice{},
823
                            find_nested_concat{},
824
                            find_transpose_slice{},
825
                            find_broadcast_transpose{},
826
                            find_slice_transpose{},
827
                            find_transpose_contiguous_reshaper_unary{});
828
        dead_code_elimination{}.apply(m);
Paul's avatar
Paul committed
829
    }
Paul's avatar
Paul committed
830
831
}

Paul's avatar
Paul committed
832
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
833
} // namespace migraphx