"test/srt/test_wave_attention_backend.py" did not exist on "995af5a54b03495ff34af28f5499f381d19758da"
accuracy_checker.py 12.1 KB
Newer Older
kahmed10's avatar
kahmed10 committed
1
2
3
#####################################################################################
# The MIT License (MIT)
#
4
# Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
kahmed10's avatar
kahmed10 committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#####################################################################################
import argparse
import numpy as np
import migraphx
import onnxruntime as ort
28
import sys
kahmed10's avatar
kahmed10 committed
29
30
31
32
33
34
35
36


def parse_args():
    parser = argparse.ArgumentParser(
        description=
        'MIGraphX accuracy checker. Use to verify onnx files to ensure MIGraphX\'s output \
                                                  is within tolerance of onnx runtime\'s expected output.'
    )
37
38
39
40
41
42
43
    file_args = parser.add_argument_group(title='file type arguments')
    file_args.add_argument('--onnx', type=str, help='path to onnx file')
    file_args.add_argument('--tf', type=str, help='path to tf pb file')
    parser.add_argument('--provider',
                        type=str,
                        default='CPUExecutionProvider',
                        help='execution provider for onnx runtime \
kahmed10's avatar
kahmed10 committed
44
45
46
47
48
49
50
51
                                (default = CPUExecutionProvider)')
    parser.add_argument('--batch',
                        type=int,
                        default=1,
                        help='batch size (if specified in onnx file)')
    parser.add_argument('--fill1',
                        action='store_true',
                        help='fill all arguments with a value of 1')
52
53
54
    parser.add_argument('--fill0',
                        action='store_true',
                        help='fill all arguments with a value of 0')
55
56
57
58
59
60
    parser.add_argument('--fp16',
                        action='store_true',
                        help='quantize MIGraphX model to fp16')
    parser.add_argument('--argmax',
                        action='store_true',
                        help='use argmax for accuracy')
kahmed10's avatar
kahmed10 committed
61
62
63
64
65
66
67
    parser.add_argument('--verbose',
                        action='store_true',
                        help='show verbose information (for debugging)')
    parser.add_argument('--tolerance',
                        type=float,
                        default=1e-3,
                        help='accuracy tolerance (default = 1e-3)')
68
69
70
71
    parser.add_argument('--input-dim',
                        type=str,
                        action='append',
                        help='specify input parameter dimension \
72
                                with the following format --input-dim input_name:dim0,dim1,dim2...'
73
                        )
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
    parser.add_argument('--target',
                        type=str,
                        default='gpu',
                        help='target to compile and run MIGraphX on')

    parser.add_argument('--ort-run',
                        dest="ort_run",
                        action='store_true',
                        default=False,
                        help='only perform an onnxruntime run')

    parser.add_argument('--ort-logging',
                        dest="ort_logging",
                        action='store_true',
                        default=False,
                        help='Turn on ort VERBOSE logging via session options')

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    parser.add_argument(
        '--disable-offload-copy',
        dest="offload_copy",
        action='store_false',
        default=True,
        help=
        'Disable offload copying (user must handle copy to and from device)')

    parser.add_argument(
        '--disable-fast-math',
        dest="fast_math",
        action='store_false',
        default=True,
        help='Disable fast math optimizations (etc: rewrite_gelu)')

    parser.add_argument('--exhaustive_tune',
                        dest="exhaustive_tune",
                        action='store_true',
                        default=False,
                        help='Enable exhaustive tuning for solutions')

kahmed10's avatar
kahmed10 committed
112
113
    args = parser.parse_args()

114
    return args, parser
kahmed10's avatar
kahmed10 committed
115
116
117
118
119
120
121


# taken from ../test_runner.py
def check_correctness(gold_outputs,
                      outputs,
                      rtol=1e-3,
                      atol=1e-3,
122
                      use_argmax=False,
kahmed10's avatar
kahmed10 committed
123
124
125
126
127
128
129
130
                      verbose=False):
    if len(gold_outputs) != len(outputs):
        print('Number of outputs {} is not equal to expected number {}'.format(
            len(outputs), len(gold_outputs)))
        return False

    out_num = len(gold_outputs)
    ret = True
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

    if not use_argmax:
        for i in range(out_num):
            if not np.allclose(gold_outputs[i], outputs[i], rtol, atol):
                ret = False
                if verbose:
                    print('\nOutput {} is incorrect ...'.format(i))
                    print('Expected value: \n{}'.format(gold_outputs[i]))
                    print('......')
                    print('Actual value: \n{}\n'.format(outputs[i]))
                else:
                    print('Outputs do not match')
                    break
    else:
        golden_argmax = np.argmax(gold_outputs)
        actual_argmax = np.argmax(outputs)
        if actual_argmax != golden_argmax:
kahmed10's avatar
kahmed10 committed
148
            ret = False
149
            print('\nOutput argmax is incorrect ...')
kahmed10's avatar
kahmed10 committed
150
            if verbose:
151
                print('Expected argmax value: \n{}'.format(golden_argmax))
kahmed10's avatar
kahmed10 committed
152
                print('......')
153
                print('Actual argmax value: \n{}\n'.format(actual_argmax))
kahmed10's avatar
kahmed10 committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    return ret


def get_np_datatype(in_type):
    datatypes = {
        'double_type': np.float64,
        'float_type': np.float32,
        'half_type': np.half,
        'int64_type': np.int64,
        'uint64_type': np.uint64,
        'int32_type': np.int32,
        'uint32_type': np.uint32,
        'int16_type': np.int16,
        'uint16_type': np.uint16,
        'int8_type': np.int8,
        'uint8_type': np.uint8,
170
        'bool_type': bool
kahmed10's avatar
kahmed10 committed
171
172
173
174
175
    }
    return datatypes[in_type]


def main():
176
    args, parser = parse_args()
kahmed10's avatar
kahmed10 committed
177

178
179
180
181
182
    use_onnx = True
    if args.onnx == None:
        use_onnx = False
    if not use_onnx and args.tf == None:
        print('Error: please specify either an onnx or tf pb file')
183
        parser.print_help()
184
185
        sys.exit(-1)

kahmed10's avatar
kahmed10 committed
186
    model_name = args.onnx
187

kahmed10's avatar
kahmed10 committed
188
189
    batch = args.batch

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    custom_inputs = args.input_dim

    input_dims = {}
    if custom_inputs != None:
        for input in custom_inputs:
            input_dim = ''.join(input.split(':')[:-1])
            dims = [int(dim) for dim in input.split(':')[-1].split(',')]
            input_dims[input_dim] = dims

    if use_onnx:
        if not input_dims:
            model = migraphx.parse_onnx(model_name, default_dim_value=batch)
        else:
            model = migraphx.parse_onnx(model_name,
                                        default_dim_value=batch,
                                        map_input_dims=input_dims)
    else:
        model_name = args.tf

        if not input_dims:
            model = migraphx.parse_tf(model_name, batch_size=batch)
        else:
            model = migraphx.parse_tf(model_name,
                                      batch_size=batch,
                                      map_input_dims=input_dims)
kahmed10's avatar
kahmed10 committed
215

216
217
218
    if (args.fp16):
        migraphx.quantize_fp16(model)

219
220
221
    if args.verbose:
        print(model)

222
    if not args.ort_run:
223
224
225
226
227
228
        model.compile(
            migraphx.get_target(args.target),
            offload_copy=args.offload_copy,
            fast_math=args.fast_math,
            exhaustive_tune=args.exhaustive_tune,
        )
kahmed10's avatar
kahmed10 committed
229
230
231
232
233

    params = {}
    test_inputs = {}
    for name, shape in model.get_parameter_shapes().items():
        if args.verbose:
234
            print(f'Parameter {name} -> {shape}')
kahmed10's avatar
kahmed10 committed
235
236
        in_shape = shape.lens()
        in_type = shape.type_string()
237
        if not args.fill1 and not args.fill0:
kahmed10's avatar
kahmed10 committed
238
239
            test_input = np.random.rand(*(in_shape)).astype(
                get_np_datatype(in_type))
240
        elif not args.fill0:
kahmed10's avatar
kahmed10 committed
241
            test_input = np.ones(in_shape).astype(get_np_datatype(in_type))
242
243
        else:
            test_input = np.zeros(in_shape).astype(get_np_datatype(in_type))
kahmed10's avatar
kahmed10 committed
244
        test_inputs[name] = test_input
245
246
247
248
        migraphx_arg = migraphx.argument(test_input)
        if not args.offload_copy:
            migraphx_arg = migraphx.to_gpu(migraphx_arg)
        params[name] = migraphx_arg
249

250
    if not args.ort_run:
251
252
253
254
        if not args.offload_copy:
            pred_migx = np.array(migraphx.from_gpu(model.run(params)[-1]))
        else:
            pred_migx = np.array(model.run(params)[-1])
kahmed10's avatar
kahmed10 committed
255

256
    if use_onnx:
257
258
259
260
261
262
263
264
265
        sess_op = ort.SessionOptions()

        if args.ort_logging:
            sess_op.log_verbosity_level = 0
            sess_op.log_severity_level = 0

        sess = ort.InferenceSession(model_name,
                                    sess_options=sess_op,
                                    providers=[args.provider])
kahmed10's avatar
kahmed10 committed
266

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
        ort_params = {}
        for input in sess.get_inputs():
            ort_params[input.name] = test_inputs[input.name]

        try:
            pred_fw = sess.run(None, ort_params)[-1]
        except Exception as e:
            if any(input_dims):
                print(
                    'Error: custom input dim may not be compatible with onnx runtime'
                )
            raise e
    else:
        import tensorflow as tf

        def load_tf_graph(model_name):
            with tf.io.gfile.GFile(model_name, 'rb') as f:
                graph_def = tf.compat.v1.GraphDef()
                graph_def.ParseFromString(f.read())

            with tf.compat.v1.Graph().as_default() as graph:
                tf.graph_util.import_graph_def(graph_def)
            return graph

        graph = load_tf_graph(model_name)
        is_nhwc = False
        graph_ops = []
        for op in graph.get_operations():
            graph_ops.append(op.name)
            if 'Conv' in op.node_def.op:
                if 'NHWC' in op.get_attr('data_format').decode('utf-8'):
                    is_nhwc = True
        graph_ops_set = set(graph_ops)
        tf_dict = {}

        for name in test_inputs.keys():
            # graph.get_operations() adds 'import/' to the op name
            tf_name = f'import/{name}'
            if tf_name not in graph_ops_set:
                continue
            x = graph.get_tensor_by_name(f'{tf_name}:0')
            tf_input = test_inputs[name]
            # transpose input for NHWC model
            if tf_input.ndim == 4 and is_nhwc:
                tf_dict[x] = np.transpose(tf_input, (0, 2, 3, 1))
            else:
                tf_dict[x] = tf_input
kahmed10's avatar
kahmed10 committed
314

315
316
317
        # assume last node in graph is output
        # TODO: let user specify op name for output
        y = graph.get_tensor_by_name(f'{graph_ops[-1]}:0')
kahmed10's avatar
kahmed10 committed
318

319
320
321
        with tf.compat.v1.Session(graph=graph) as sess:
            y_out = sess.run(y, feed_dict=tf_dict)
            pred_fw = y_out
kahmed10's avatar
kahmed10 committed
322

323
324
    if not args.ort_run:
        is_correct = check_correctness(pred_fw, pred_migx, args.tolerance,
325
326
                                       args.tolerance, args.argmax,
                                       args.verbose)
327
328
329
330
331
332
        verbose_string = ' Rerun with --verbose for detailed information.' \
                if not args.verbose else ''
        if is_correct:
            print('PASSED: MIGraphX meets tolerance')
        else:
            print('FAILED: MIGraphX is not within tolerance.' + verbose_string)
kahmed10's avatar
kahmed10 committed
333
334
335
336


if __name__ == '__main__':
    main()