lowering.cpp 23.1 KB
Newer Older
Paul's avatar
Paul committed
1

Paul's avatar
Paul committed
2
3
4
5
6
7
8
#include <migraphx/cpu/lowering.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/cpu/gemm.hpp>
Paul's avatar
Paul committed
9
#include <unordered_map>
Paul's avatar
Paul committed
10
#include <utility>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
namespace migraphx {
Paul's avatar
Paul committed
13
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
14
15
16
17
18
19
20
21
namespace cpu {

template <typename T>
T zero(const T&)
{
    return T(0);
}

Khalique's avatar
Khalique committed
22
23
24
25
template <class T>
typename std::conditional_t<std::is_integral<T>{}, std::make_signed<T>, std::enable_if<true, T>>::
    type
    make_signed(T x)
Khalique's avatar
Khalique committed
26
27
28
29
{
    return x;
}

30
31
32
33
//
// cpu implemenataion of batch norm for inference
//
// inputs are:
34
35
36
37
// args[0] -> input data buffer
// args[1] -> mini batch mean
// args[2] -> mini batch variance
// args[3] -> gamma
Aditya Atluri's avatar
Aditya Atluri committed
38
// args[4] -> bias
39
40
41
//
// The equation to compute batch norm for inference is:
//
Aditya Atluri's avatar
Aditya Atluri committed
42
// output[i] = bias + gamma * (input[i] + mean) / sqrt(variance + epsilon)
43
44
45
46
47
//
// the input data format should be nchw
//
struct cpu_batch_norm_inference
{
48
    op::batch_norm_inference op;
49

50
51
    std::string name() const { return "cpu::batch_norm_inference"; }

Paul's avatar
Paul committed
52
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
53

Paul's avatar
Paul committed
54
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
55
    {
56
57
        argument output{output_shape};

Aditya Atluri's avatar
Aditya Atluri committed
58
59
        double epsilon           = op.epsilon;
        auto input               = args[0];
Paul's avatar
Paul committed
60
61
62
63
        auto arg_gamma           = args[1];
        auto arg_bias            = args[2];
        auto mini_batch_mean     = args[3];
        auto mini_batch_variance = args[4];
64

65
        auto num_batch    = output_shape.lens()[0];
Aditya Atluri's avatar
Aditya Atluri committed
66
67
        auto num_channels = output_shape.lens()[1];
        auto image_height = output_shape.lens()[2];
68
        auto image_width  = output_shape.lens()[3];
Aditya Atluri's avatar
Aditya Atluri committed
69

70
        if(op.bn_mode == op::batch_norm_inference::spatial)
Scott Thornton's avatar
Scott Thornton committed
71
72
73
74
75
76
        {
            visit_all(output, input, mini_batch_mean, mini_batch_variance, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

                    dfor(num_batch, num_channels, image_height, image_width)(
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
Paul's avatar
Paul committed
77
                            assert((variance(c) + epsilon) > 0);
Scott Thornton's avatar
Scott Thornton committed
78
79
80
81
82
                            result(n, c, h, w) = gamma(c) * (buffer(n, c, h, w) - mean(c)) /
                                                     std::sqrt(variance(c) + epsilon) +
                                                 bias(c);
                        });
                });
83
84
        }

85
        if(op.bn_mode == op::batch_norm_inference::per_activation)
Scott Thornton's avatar
Scott Thornton committed
86
        {
87
88
89
            visit_all(output, input, mini_batch_mean, mini_batch_mean, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Scott Thornton's avatar
Scott Thornton committed
90
                    dfor(num_batch, num_channels, image_height, image_width)(
91
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
Paul's avatar
Paul committed
92
                            assert((variance(c, h, w) + epsilon) > 0);
Scott Thornton's avatar
Scott Thornton committed
93
94
95
96
97
98
                            result(n, c, h, w) = gamma(c, h, w) *
                                                     (buffer(n, c, h, w) - mean(c, h, w)) /
                                                     std::sqrt(variance(c, h, w) + epsilon) +
                                                 bias(c, h, w);
                        });
                });
99
        }
100
101
102
103
104

        return output;
    }
};

Paul's avatar
Paul committed
105
106
struct cpu_convolution
{
107
    op::convolution op;
Paul's avatar
Paul committed
108
109

    std::string name() const { return "cpu::convolution"; }
Paul's avatar
Paul committed
110
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
111
112
113
114
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
Khalique's avatar
Khalique committed
115
            auto in   = input.get_shape().lens();
Khalique's avatar
Khalique committed
116
117
            auto in_h = in[2];
            auto in_w = in[3];
Paul's avatar
Paul committed
118

Khalique's avatar
Khalique committed
119
            auto wei   = weights.get_shape().lens();
Khalique's avatar
Khalique committed
120
121
122
123
            auto wei_n = wei[0];
            auto wei_c = wei[1];
            auto wei_h = wei[2];
            auto wei_w = wei[3];
Paul's avatar
Paul committed
124
125
126
127
128
129

            dfor(output_shape.lens()[0],
                 output_shape.lens()[1],
                 output_shape.lens()[2],
                 output_shape.lens()[3])(
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
Khalique's avatar
Khalique committed
130
131
                    const int start_x  = i * op.stride[0] - op.padding[0];
                    const int start_y  = j * op.stride[1] - op.padding[1];
Khalique's avatar
Khalique committed
132
                    const int group_id = w / (wei_n / op.group);
Paul's avatar
Paul committed
133
134
135

                    double acc = 0;
                    dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
Khalique's avatar
Khalique committed
136
137
                        const int in_x  = start_x + x;
                        const int in_y  = start_y + y;
Khalique's avatar
Khalique committed
138
                        const int in_ch = group_id * wei_c + k;
Paul's avatar
Paul committed
139
140
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
Khalique's avatar
Khalique committed
141
                            acc += input(o, in_ch, in_x, in_y) * weights(w, k, x, y);
Paul's avatar
Paul committed
142
143
144
145
146
147
148
149
150
                        }
                    });
                    output(o, w, i, j) = acc;
                });
        });
        return result;
    }
};

Scott Thornton's avatar
Scott Thornton committed
151
152
struct cpu_im2col
{
153
    op::im2col op;
Scott Thornton's avatar
Scott Thornton committed
154

Scott Thornton's avatar
Scott Thornton committed
155
156
    static std::string name() { return "cpu::im2col"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Scott Thornton's avatar
Scott Thornton committed
157

wsttiger's avatar
wsttiger committed
158
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Scott Thornton's avatar
Scott Thornton committed
159
    {
Scott Thornton's avatar
Scott Thornton committed
160
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
161
        auto input_shape   = args[0].get_shape();
Scott Thornton's avatar
Scott Thornton committed
162
163
        auto weights_shape = args[1].get_shape();
        visit_all(result, args[0])([&](auto col, auto input) {
Scott Thornton's avatar
Scott Thornton committed
164
165
            const std::size_t& height   = input_shape.lens()[2];
            const std::size_t& width    = input_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
166
167
168
            const std::size_t& channels = weights_shape.lens()[1];
            const std::size_t& kernel_h = weights_shape.lens()[2];
            const std::size_t& kernel_w = weights_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
169
170
            const std::size_t& pad_h    = op.padding[0];
            const std::size_t& pad_w    = op.padding[1];
Scott Thornton's avatar
Scott Thornton committed
171
172
173
174
            const std::size_t& stride_h = op.stride[0];
            const std::size_t& stride_w = op.stride[1];

            int kdiv2_h, kdiv2_w;
Scott Thornton's avatar
Scott Thornton committed
175
176
            kdiv2_h = kernel_h / 2;
            kdiv2_w = kernel_w / 2;
Scott Thornton's avatar
Scott Thornton committed
177
            // calculate output sizes
Scott Thornton's avatar
Scott Thornton committed
178
179
            const std::size_t col_height = (height - kernel_h + 2 * pad_h) / stride_h + 1;
            const std::size_t col_width  = (width - kernel_w + 2 * pad_w) / stride_w + 1;
wsttiger's avatar
wsttiger committed
180
            // account for padding for the starting position of the input pixels
Scott Thornton's avatar
Scott Thornton committed
181
            std::size_t iinput = kdiv2_h - pad_h;
wsttiger's avatar
wsttiger committed
182
            // loop over output pixels (ioutput, joutput)
Scott Thornton's avatar
Scott Thornton committed
183
184
185
186
187
188
189
190
            for(std::size_t ioutput = 0; ioutput < col_height; ioutput++, iinput += stride_h)
            {
                std::size_t jinput = kdiv2_w - pad_w;
                for(std::size_t joutput = 0; joutput < col_width; joutput++, jinput += stride_w)
                {
                    // compute linear index for output
                    std::size_t ldx = ioutput * col_width + joutput;
                    std::size_t p   = 0;
wsttiger's avatar
wsttiger committed
191
192
193
194
195
196
197
198
199
200
                    dfor(channels,
                         kernel_h,
                         kernel_w)([&](std::size_t c, std::size_t koffset, std::size_t loffset) {
                        int idx     = iinput + koffset - kdiv2_h;
                        int jdx     = jinput + loffset - kdiv2_w;
                        col(ldx, p) = ((idx >= 0) && (idx < height) && (jdx >= 0) && (jdx < width))
                                          ? input(0, c, idx, jdx)
                                          : 0;
                        p++;
                    });
Scott Thornton's avatar
Scott Thornton committed
201
202
                }
            }
Scott Thornton's avatar
Scott Thornton committed
203
        });
Scott Thornton's avatar
Scott Thornton committed
204
205
206
207
        return result;
    }
};

Paul's avatar
Paul committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
struct max_pool
{
    static std::string name() { return "max"; }
    static double start() { return std::numeric_limits<double>::lowest(); }

    static double apply(double x, double y)
    {
        double m = std::max(x, y);
        return (m);
    }

    static double final(double x, double) { return (x); }
};

struct avg_pool
{
    static std::string name() { return "average"; }
    static double start() { return 0.0; }

    static double apply(double x, double y) { return x + y; }

    static double final(double x, double y) { return x / y; }
};

template <class Op>
struct cpu_pooling
{
235
    op::pooling op;
Paul's avatar
Paul committed
236
237

    std::string name() const { return "cpu::pooling_" + Op::name(); }
Paul's avatar
Paul committed
238
239
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using type = typename decltype(output)::value_type;
            auto in_h  = input.get_shape().lens()[2];
            auto in_w  = input.get_shape().lens()[3];

            dfor(output_shape.lens()[0],
                 output_shape.lens()[1],
                 output_shape.lens()[2],
                 output_shape.lens()[3])(
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x0 = i * op.stride[0] - op.padding[0];
                    const int start_y0 = j * op.stride[1] - op.padding[1];

                    const int hend = std::min(start_x0 + op.lengths[0], in_h);
                    const int wend = std::min(start_y0 + op.lengths[1], in_w);

                    const int start_x = std::max(start_x0, 0);
                    const int start_y = std::max(start_y0, 0);

                    const int w_h       = (hend - start_x);
                    const int w_w       = (wend - start_y);
                    const int pool_size = std::max(w_h * w_w, 1);

                    double acc = Op::start();
                    dfor(w_h, w_w)([&](int x, int y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc = Op::apply(acc, input(o, w, in_x, in_y));
                        }
                    });
                    output(o, w, i, j) = type(Op::final(acc, pool_size));
                });
        });
        return result;
    }
};

struct cpu_contiguous
{
283
    op::contiguous op;
Paul's avatar
Paul committed
284
    std::string name() const { return "cpu::contiguous"; }
Paul's avatar
Paul committed
285
286
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
287
    {
Paul's avatar
Paul committed
288
        assert(output_shape.standard());
Paul's avatar
Paul committed
289
290
291
292
293
294
295
296
297
298
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            shape_for_each(output.get_shape(), [&](const auto& idx) {
                output(idx.begin(), idx.end()) = input(idx.begin(), idx.end());
            });
        });
        return result;
    }
};

299
300
301
302
303
304
305
306
struct cpu_concat
{
    op::concat op;
    std::string name() const { return "cpu::concat"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
307
        std::vector<std::size_t> coffsets = op.compute_offsets(output_shape, args);
Scott Thornton's avatar
Scott Thornton committed
308
        for(std::size_t l = 0; l < args.size(); l++)
309
        {
Scott Thornton's avatar
Scott Thornton committed
310
            auto argl             = args[l];
311
312
            std::size_t nelements = argl.get_shape().elements();
            visit_all(result, argl)([&](auto output, auto input) {
wsttiger's avatar
wsttiger committed
313
314
315
                auto slice_shape =
                    shape{output_shape.type(), input.get_shape().lens(), output_shape.strides()};
                auto slice = make_view(slice_shape, output.data() + coffsets[l]);
wsttiger's avatar
wsttiger committed
316
                // cppcheck-suppress useStlAlgorithm
wsttiger's avatar
wsttiger committed
317
                for(std::size_t i = 0; i < nelements; i++)
wsttiger's avatar
wsttiger committed
318
319
                {
                    slice[i] = input[i];
320
321
322
323
324
325
326
                }
            });
        }
        return result;
    }
};

Paul's avatar
Paul committed
327
328
struct cpu_gemm
{
Shucai Xiao's avatar
Shucai Xiao committed
329
330
    op::dot op;
    std::string name() const { return "cpu::dot"; }
Paul's avatar
Paul committed
331
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
332

Paul's avatar
Paul committed
333
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
334
335
    {
        argument result{output_shape};
Paul's avatar
Paul committed
336
        migemm(result, args[0], args[1], op.alpha, op.beta);
Paul's avatar
Paul committed
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
        return result;
    }
};

struct identity_op
{
    std::string name() const { return "cpu::identity"; }
    auto fcn() const
    {
        return [](auto x) { return x; };
    }
};

struct abs_op
{
    std::string name() const { return "cpu::abs"; }
    auto fcn() const
    {
Khalique's avatar
Khalique committed
355
        return [](auto x) { return std::abs(make_signed(x)); };
Paul's avatar
Paul committed
356
357
358
359
360
361
362
363
364
365
366
367
    }
};

struct exp_op
{
    std::string name() const { return "cpu::exp"; }
    auto fcn() const
    {
        return [](auto x) { return std::exp(x); };
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
368
369
370
371
372
373
374
375
376
struct log_op
{
    std::string name() const { return "cpu::log"; }
    auto fcn() const
    {
        return [](auto x) { return std::log(x); };
    }
};

Paul's avatar
Paul committed
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
struct sin_op
{
    std::string name() const { return "cpu::sin"; }
    auto fcn() const
    {
        return [](auto x) { return std::sin(x); };
    }
};

struct cos_op
{
    std::string name() const { return "cpu::cos"; }
    auto fcn() const
    {
        return [](auto x) { return std::cos(x); };
    }
};

struct tan_op
{
    std::string name() const { return "cpu::tan"; }
    auto fcn() const
    {
        return [](auto x) { return std::tan(x); };
    }
};

struct asin_op
{
    std::string name() const { return "cpu::asin"; }
    auto fcn() const
    {
        return [](auto x) { return std::asin(x); };
    }
};

struct acos_op
{
    std::string name() const { return "cpu::acos"; }
    auto fcn() const
    {
        return [](auto x) { return std::acos(x); };
    }
};

struct atan_op
{
    std::string name() const { return "cpu::atan"; }
    auto fcn() const
    {
        return [](auto x) { return std::atan(x); };
    }
};

431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
struct sinh_op
{
    std::string name() const { return "cpu::sinh"; }
    auto fcn() const
    {
        return [](auto x) { return std::sinh(x); };
    }
};

struct cosh_op
{
    std::string name() const { return "cpu::cosh"; }
    auto fcn() const
    {
        return [](auto x) { return std::cosh(x); };
    }
};

Paul's avatar
Paul committed
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
struct tanh_op
{
    std::string name() const { return "cpu::tanh"; }
    auto fcn() const
    {
        return [](auto x) { return std::tanh(x); };
    }
};

struct sigmoid_op
{
    std::string name() const { return "cpu::sigmoid"; }
    auto fcn() const
    {
        return [](auto x) { return 1.f / (1.f + std::exp(-x)); };
    }
};

struct neg_op
{
    std::string name() const { return "cpu::neg"; }
    auto fcn() const
    {
        return [](auto x) { return -x; };
    }
};

struct relu_op
{
    std::string name() const { return "cpu::relu"; }
    auto fcn() const
    {
Paul's avatar
Paul committed
481
        return [](auto x) { return std::max(decltype(x){0}, x); };
Paul's avatar
Paul committed
482
483
484
    }
};

Khalique's avatar
Khalique committed
485
486
487
488
489
490
491
492
493
494
495
struct leaky_relu_op
{
    op::leaky_relu op;
    std::string name() const { return "cpu::leaky_relu"; }
    auto fcn() const
    {
        auto& a = op.alpha;
        return [a](auto x) { return x > 0 ? x : x * a; };
    }
};

Khalique's avatar
Khalique committed
496
497
498
499
500
501
502
503
504
505
506
struct elu_op
{
    op::elu op;
    std::string name() const { return "cpu::elu"; }
    auto fcn() const
    {
        auto& a = op.alpha;
        return [a](auto x) { return x > 0 ? x : a * std::expm1(x); };
    }
};

Paul's avatar
Paul committed
507
508
509
510
511
template <typename Op>
struct cpu_unary
{
    Op op;
    std::string name() const { return op.name(); }
Paul's avatar
Paul committed
512
513
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
514
515
516
517
518
519
520
521
522
523
524
525
526
527
    {
        argument result{output_shape};
        result.visit([&](auto output) {
            args[0].visit([&](auto input) {
                std::transform(input.begin(), input.end(), output.begin(), op.fcn());
            });
        });
        return result;
    }
};

struct softmax2d
{
    std::string name() const { return "cpu::softmax2d"; }
Paul's avatar
Paul committed
528
529
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
            auto nb          = input.get_shape().lens()[0];
            auto nc          = input.get_shape().lens()[1];
            auto nh          = input.get_shape().lens()[2];
            auto nw          = input.get_shape().lens()[3];
            dfor(nb, nh, nw)([&](std::size_t b, std::size_t i, std::size_t j) {
                value_type cmax = std::numeric_limits<value_type>::lowest();
                for(int c = 0; c < nc; c++)
                {
                    cmax = std::max(cmax, input(b, c, i, j));
                }
                for(int c = 0; c < nc; c++)
                {
                    output(b, c, i, j) = std::exp(input(b, c, i, j) - cmax);
                }
                value_type sum = value_type(0);
                for(int c = 0; c < nc; c++)
                {
                    sum += output(b, c, i, j);
                }
                for(int c = 0; c < nc; c++)
                {
                    output(b, c, i, j) = output(b, c, i, j) / sum;
                }
            });
        });
        return result;
    }
};

struct add_op
{
    std::string name() const { return "add"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x + y; };
    }
};

struct sub_op
{
    std::string name() const { return "sub"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x - y; };
    }
};

struct mul_op
{
    std::string name() const { return "mul"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x * y; };
    }
};

struct div_op
{
    std::string name() const { return "div"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x / y; };
    }
};

Khalique's avatar
Khalique committed
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
struct max_op
{
    std::string name() const { return "max"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return std::max(x, y); };
    }
};

struct min_op
{
    std::string name() const { return "min"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return std::min(x, y); };
    }
};

Paul's avatar
Paul committed
617
618
619
620
621
template <typename Op>
struct cpu_binary
{
    Op op;
    std::string name() const { return op.name(); }
Paul's avatar
Paul committed
622
623
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input1, auto input2) {
            if(input1.get_shape().packed() and input2.get_shape().packed())
            {
                std::transform(
                    input1.begin(), input1.end(), input2.begin(), output.begin(), op.fcn());
            }
            else
            {
                shape_for_each(output.get_shape(), [&](const auto& idx) {
                    output(idx.begin(), idx.end()) =
                        op.fcn()(input1(idx.begin(), idx.end()), input2(idx.begin(), idx.end()));
                });
            }
        });
        return result;
    }
};

struct cpu_apply
{
    program* prog;
    std::unordered_map<std::string, std::function<void(instruction_ref)>> apply_map{};

    template <class T>
    auto simple_op()
    {
        return [this](instruction_ref ins) { apply_simple_op<T>(ins); };
    }

    template <class T, class Op>
    auto extend_op()
    {
        return [this](instruction_ref ins) { apply_extend_op<T, Op>(ins); };
    }

    void init()
    {
663
664
        apply_map["im2col"]      = extend_op<cpu_im2col, op::im2col>();
        apply_map["convolution"] = extend_op<cpu_convolution, op::convolution>();
665
        apply_map["dot"]         = extend_op<cpu_gemm, op::dot>();
Aditya Atluri's avatar
Aditya Atluri committed
666
        apply_map["batch_norm_inference"] =
667
668
            extend_op<cpu_batch_norm_inference, op::batch_norm_inference>();
        apply_map["contiguous"] = extend_op<cpu_contiguous, op::contiguous>();
Scott Thornton's avatar
Scott Thornton committed
669
        apply_map["concat"]     = extend_op<cpu_concat, op::concat>();
Khalique's avatar
Khalique committed
670
        apply_map["leaky_relu"] = extend_op<cpu_unary<leaky_relu_op>, op::leaky_relu>();
Khalique's avatar
Khalique committed
671
        apply_map["elu"]        = extend_op<cpu_unary<elu_op>, op::elu>();
wsttiger's avatar
wsttiger committed
672
        apply_map["identity"]   = simple_op<cpu_unary<identity_op>>();
Khalique's avatar
Khalique committed
673
        apply_map["abs"]        = simple_op<cpu_unary<abs_op>>();
674
675
        apply_map["sinh"]       = simple_op<cpu_unary<sinh_op>>();
        apply_map["cosh"]       = simple_op<cpu_unary<cosh_op>>();
wsttiger's avatar
wsttiger committed
676
677
678
        apply_map["tanh"]       = simple_op<cpu_unary<tanh_op>>();
        apply_map["sigmoid"]    = simple_op<cpu_unary<sigmoid_op>>();
        apply_map["exp"]        = simple_op<cpu_unary<exp_op>>();
Shucai Xiao's avatar
Shucai Xiao committed
679
        apply_map["log"]        = simple_op<cpu_unary<log_op>>();
wsttiger's avatar
wsttiger committed
680
681
682
683
        apply_map["neg"]        = simple_op<cpu_unary<neg_op>>();
        apply_map["sin"]        = simple_op<cpu_unary<sin_op>>();
        apply_map["cos"]        = simple_op<cpu_unary<cos_op>>();
        apply_map["tan"]        = simple_op<cpu_unary<tan_op>>();
684
685
686
        apply_map["asin"]       = simple_op<cpu_unary<asin_op>>();
        apply_map["acos"]       = simple_op<cpu_unary<acos_op>>();
        apply_map["atan"]       = simple_op<cpu_unary<atan_op>>();
Khalique's avatar
Khalique committed
687
        apply_map["relu"]       = simple_op<cpu_unary<relu_op>>();
wsttiger's avatar
wsttiger committed
688
689
690
691
        apply_map["add"]        = simple_op<cpu_binary<add_op>>();
        apply_map["sub"]        = simple_op<cpu_binary<sub_op>>();
        apply_map["mul"]        = simple_op<cpu_binary<mul_op>>();
        apply_map["div"]        = simple_op<cpu_binary<div_op>>();
Khalique's avatar
Khalique committed
692
693
        apply_map["max"]        = simple_op<cpu_binary<max_op>>();
        apply_map["min"]        = simple_op<cpu_binary<min_op>>();
Paul's avatar
Paul committed
694
695
696
697
698
699
700
701
702

        apply_map["softmax"] = simple_op<softmax2d>();
    }

    void apply()
    {
        init();
        for(auto it : iterator_for(*prog))
        {
Khalique's avatar
Khalique committed
703
            if(it->name() == "pooling")
Paul's avatar
Paul committed
704
705
706
            {
                apply_pooling(it);
            }
Paul's avatar
Paul committed
707
            else if(apply_map.count(it->name()) > 0)
Paul's avatar
Paul committed
708
            {
Paul's avatar
Paul committed
709
                apply_map.at(it->name())(it);
Paul's avatar
Paul committed
710
711
712
713
714
715
716
            }
        }
    }

    template <class T>
    void apply_simple_op(instruction_ref ins)
    {
Paul's avatar
Paul committed
717
        prog->replace_instruction(ins, T{}, ins->inputs());
Paul's avatar
Paul committed
718
719
720
721
722
    }

    template <class T, class Op>
    void apply_extend_op(instruction_ref ins)
    {
723
        auto&& op = any_cast<Op>(ins->get_operator());
Paul's avatar
Paul committed
724
        prog->replace_instruction(ins, T{op}, ins->inputs());
Paul's avatar
Paul committed
725
726
727
728
    }

    void apply_pooling(instruction_ref ins)
    {
729
        auto&& op = any_cast<op::pooling>(ins->get_operator());
Paul's avatar
Paul committed
730
        if(op.mode == "max")
Paul's avatar
Paul committed
731
            prog->replace_instruction(ins, cpu_pooling<max_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
732
        else if(op.mode == "average")
Paul's avatar
Paul committed
733
            prog->replace_instruction(ins, cpu_pooling<avg_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
734
735
736
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
737
void lowering::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
738
739

} // namespace cpu
Paul's avatar
Paul committed
740
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
741
} // namespace migraphx