ck_elementwise.cpp 8.42 KB
Newer Older
turneram's avatar
turneram committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/gpu/context.hpp>

turneram's avatar
turneram committed
28
29
30

#include <migraphx/gpu/compile_gen.hpp>

turneram's avatar
turneram committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/gpu/compile_hip.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/reduce_dims.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/eliminate_common_subexpression.hpp>
#include <migraphx/module.hpp>
#include <migraphx/pass_manager.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {

turneram's avatar
turneram committed
45
46
using namespace migraphx::gpu::gen; // NOLINT

turneram's avatar
turneram committed
47
static const char* const ck_elementwise_kernel = R"__migraphx__(
turneram's avatar
turneram committed
48
//#include <migraphx/kernels/ck_elementwise.hpp>
turneram's avatar
turneram committed
49
50
51
52
53
#include <migraphx/kernels/ops.hpp>
#include <migraphx/kernels/integral_constant.hpp>
#include <migraphx/kernels/generic_constant.hpp>
#include <args.hpp>

turneram's avatar
turneram committed
54
55
56
57
58
59
60
61
62
63
64
65

#include <migraphx/kernels/index.hpp>
#include <migraphx/kernels/algorithm.hpp>
#include <migraphx/kernels/integral_constant.hpp>
#include <migraphx/kernels/tensor_view.hpp>

#include "ck/device_utility/device_prop.hpp"
#include "ck/device_utility/kernel_launch.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_binary_elementwise_1d.hpp"

turneram's avatar
turneram committed
66
67
namespace migraphx {

turneram's avatar
turneram committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
using ADataType          = float;
using BDataType          = float;
using CDataType          = float;
using ElementwiseFunctor = float;

static constexpr auto I0 = ck::Number<0>{};

template <class L, class S, class N>
constexpr auto MakeDescriptor_M(const L& lengths, const S& strides, const N& ndim)
{
    auto gridSize       = 72;
    auto blockSize      = 1024;
    //constexpr auto ndim = 1;
    // auto idx          = make_index();
    auto tupleOfShape = generate_tuple([&](auto I) { return static_cast<ck::index_t>(lengths[I]); },
                                       ck::Number<ndim>{});
    auto tupleOfStride = generate_tuple(
        [&](auto I) { return static_cast<ck::index_t>(strides[I]); }, ck::Number<1>{});
    const auto desc = make_naive_tensor_descriptor(tupleOfShape, tupleOfStride);
    auto desc_m     = desc;
    // merge nd to 1d desc - [s0 * s1 * ...]
    if constexpr(ndim > 1)
    {
        desc_m = transform_tensor_descriptor(
            desc,
            make_tuple(make_merge_transform(tupleOfShape)),
            make_tuple(generate_sequence_v2([&](auto I) { return I; }, ck::Number<ndim>{})),
            make_tuple(ck::Sequence<0>{}));
    }

    const auto M                = desc_m.GetLength(I0);
    const ck::index_t loop_step = /* idx.nglobal(); // */ gridSize * blockSize /*  * MPerThread */;
    const auto pad              = ck::math::integer_least_multiple(M, loop_step) - M;
    const auto desc_m_pad =
        transform_tensor_descriptor(desc_m,
                                    make_tuple(ck::make_right_pad_transform(M, pad)),
                                    make_tuple(ck::Sequence<0>{}),
                                    make_tuple(ck::Sequence<0>{}));
    return desc_m_pad;
}

struct Add
{
    template <typename Y, typename X0, typename X1>
    __device__ constexpr void operator()(Y& y, const X0& x0, const X1& x1) const
    {
        y = x0 + x1;
    };
};

turneram's avatar
turneram committed
118
119
120
121
extern "C" {

__global__ void ck_elementwise_kernel(void* a_p, void* b_p, void* c_p) 
{
turneram's avatar
turneram committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    make_tensors()(a_p, b_p, c_p)([](auto a_t, auto b_t, auto c_t) { 
        constexpr auto lengths = get_shape_c<decltype(a_t)>{}.lens;
        constexpr auto strides = get_shape_c<decltype(a_t)>{}.strides;
        constexpr auto ndim = _c<decltype(lengths.size()){}>[1];
        constexpr auto a_desc  = MakeDescriptor_M(lengths, strides, ndim);

        using AGridDesc_M        = decltype(a_desc);
        using GridwiseBinEltwise = ck::GridwiseBinaryElementwise_1D<ADataType,
                                                                    BDataType,
                                                                    CDataType,
                                                                    CDataType,
                                                                    AGridDesc_M,
                                                                    AGridDesc_M,
                                                                    AGridDesc_M,
                                                                    Add,
                                                                    1,
                                                                    1,
                                                                    1,
                                                                    1>;
        auto op                  = Add{};
        GridwiseBinEltwise::Run(a_t.data(), b_t.data(), c_t.data(), a_desc, a_desc, a_desc, op);
turneram's avatar
turneram committed
143
    });
turneram's avatar
turneram committed
144
145
146
147
148
149
150
151
}

}

} // namespace migraphx

)__migraphx__";

turneram's avatar
turneram committed
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
// NOLINTNEXTLINE
// static const char* const ck_elementwise_kernel = R"__migraphx__(
// #include <migraphx/kernels/ck_elementwise.hpp>
// #include <migraphx/kernels/ops.hpp>
// #include <migraphx/kernels/integral_constant.hpp>
// #include <migraphx/kernels/generic_constant.hpp>
// #include <args.hpp>

// namespace migraphx {

// extern "C" {

// __global__ void ck_elementwise_kernel(void* a_p, void* b_p, void* c_p) 
// {
//     make_tensors()(a_p, b_p, c_p)([](auto&&... xs) { 
//         ck_elementwise(xs...); 
//     });
// }

// }

// } // namespace migraphx

// )__migraphx__";

turneram's avatar
turneram committed
177
178
179
180
struct ck_elementwise_compiler : compiler<ck_elementwise_compiler>
{
    std::vector<std::string> names() const { return {"ck_elementwise"}; }

turneram's avatar
turneram committed
181
182
183
184
185
186
187
188
    static std::size_t oversubscribe_if(bool b)
    {
        if(b)
            return 256;
        else
            return 1;
    }

turneram's avatar
turneram committed
189
190
    operation compile_op(context& ctx, const std::vector<shape>& inputs, const value& v) const
    {
turneram's avatar
turneram committed
191
192
193
194
195
196
197
198
199
        // hip_compile_options options;
        // auto out_s = inputs.back();
        // options.set_launch_params(v, compute_global_for(ctx, out_s.elements()));
        // options.inputs         = inputs;
        // options.output         = out_s;
        // options.kernel_name    = "ck_elementwise_kernel";
        // options.virtual_inputs = inputs;

        // return compile_hip_code_object(ck_elementwise_kernel, options);
turneram's avatar
turneram committed
200
201
        hip_compile_options options;
        options.inputs         = inputs;
turneram's avatar
turneram committed
202
203
204
205
206
207
        options.output         = inputs.back();
        options.virtual_inputs = reduce_dims(inputs);
        options.params         = "-Wno-float-equal";
        auto axis              = find_fast_axis(options.virtual_inputs);
        auto vec               = vectorize::elements(axis, options.virtual_inputs);
        auto preloads          = preload::broadcasts(axis, options.virtual_inputs);
turneram's avatar
turneram committed
208
        options.kernel_name    = "ck_elementwise_kernel";
turneram's avatar
turneram committed
209
210
211
212
213
        options.set_launch_params(
            v,
            compute_global_for(ctx,
                               options.output.elements() / vec.size,
                               oversubscribe_if(not preloads.is_preloading())));
turneram's avatar
turneram committed
214
215
216
217
218
219
220
221
222
223
224
225
        return compile_hip_code_object(ck_elementwise_kernel, options);
    }

    compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
    {
        return replace(compile_op(ctx, to_shapes(ins->inputs()), op.to_value()));
    }
};

} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx