ck_gemm.cpp 12.6 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <fstream>
#include <filesystem>
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/gpu/context.hpp>

#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/gpu/compile_hip.hpp>
Paul's avatar
Paul committed
32
#include <migraphx/gpu/compile_gen.hpp>
Paul's avatar
Paul committed
33
#include <migraphx/ranges.hpp>
Paul's avatar
Paul committed
34
#include <migraphx/env.hpp>
Paul's avatar
Paul committed
35
36
37
38
#include <migraphx/reduce_dims.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/module.hpp>
#include <migraphx/env.hpp>
Paul's avatar
Paul committed
39
#include <migraphx/file_buffer.hpp>
Paul's avatar
Paul committed
40

Alan Turner's avatar
Alan Turner committed
41
#include "ck/include/device_gemm_multiple_d.hpp"
42

Paul's avatar
Paul committed
43
44
45
46
47
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

namespace gpu {

Paul's avatar
Paul committed
48
49
using namespace migraphx::gpu::gen; // NOLINT

Paul's avatar
Paul committed
50
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_LOG_CK_GEMM);
Paul's avatar
Paul committed
51
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_CK_TUNING);
Paul's avatar
Paul committed
52
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_CK_TUNING_VALUE);
Paul's avatar
Paul committed
53
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_CK_DEBUG);
Paul's avatar
Paul committed
54

Paul's avatar
Paul committed
55
56
57
58
// NOLINTNEXTLINE
static const char* const ck_gemm_kernel = R"__migraphx__(
#include <args.hpp>
#include <migraphx/kernels/ck_gemm.hpp>
Paul's avatar
Paul committed
59
#include <migraphx/kernels/pointwise.hpp>
Alan Turner's avatar
Alan Turner committed
60
#include <migraphx/kernels/${include}>
Paul's avatar
Paul committed
61
62
63

namespace migraphx {

Paul's avatar
Paul committed
64
65
${preamble}

Paul's avatar
Paul committed
66
67
extern "C" {

Paul's avatar
Paul committed
68
__global__ void ${kernel}(${params})
Paul's avatar
Paul committed
69
{
Paul's avatar
Paul committed
70
    transform_args(make_tensors(), rotate_last())(${args})([](auto... xs) {
71
        ck_gemm<${solution}, ${blocks_per_batch}>(xs...);
Paul's avatar
Paul committed
72
73
74
75
76
77
78
79
80
    });
}

}

} // namespace migraphx

)__migraphx__";

Paul's avatar
Paul committed
81
82
static bool transposed_matrix(const shape& s) { return s.strides().back() != 1; }

Paul's avatar
Format  
Paul committed
83
template <class F, class Action>
Paul's avatar
Paul committed
84
85
86
87
88
89
90
91
auto action_decorate(F f, Action action)
{
    return [=](auto&&... xs) {
        action();
        f(std::forward<decltype(xs)>(xs)...);
    };
}

Paul's avatar
Paul committed
92
93
94
using tuning_entry = std::pair<std::vector<shape>, size_t>;
static std::vector<tuning_entry> read_tuning(const std::string& s)
{
Paul's avatar
Format  
Paul committed
95
    if(not fs::exists(s))
Paul's avatar
Paul committed
96
97
98
99
        return {};
    return from_value<std::vector<tuning_entry>>(from_json_string(read_string(s)));
}

Paul's avatar
Paul committed
100
101
static float matrix_distance(const shape& x, const shape& y)
{
Paul's avatar
Format  
Paul committed
102
    if(x.type() != y.type())
Paul's avatar
Paul committed
103
        return std::numeric_limits<float>::max();
Paul's avatar
Format  
Paul committed
104
    if(transposed_matrix(x) != transposed_matrix(y))
Paul's avatar
Paul committed
105
        return std::numeric_limits<float>::max();
Paul's avatar
Format  
Paul committed
106
107
108
109
110
111
    auto sum_squared = std::inner_product(x.lens().rbegin(),
                                          x.lens().rbegin() + 2,
                                          y.lens().rbegin(),
                                          0,
                                          std::plus<>{},
                                          [](auto a, auto b) { return (a - b) * (a - b); });
Paul's avatar
Paul committed
112
113
114
    return std::sqrt(sum_squared);
}

Paul's avatar
Paul committed
115
116
117
static std::size_t get_tuning_for(const std::vector<shape>& inputs)
{
    static auto tuning = read_tuning(string_value_of(MIGRAPHX_CK_TUNING{}, ""));
Paul's avatar
Format  
Paul committed
118
    if(tuning.empty())
Paul's avatar
Paul committed
119
        std::cout << "*********** Warning: No CK tuning!" << std::endl;
Paul's avatar
Format  
Paul committed
120
    auto it = std::find_if(
Paul's avatar
Format  
Paul committed
121
        tuning.begin(), tuning.end(), [&](const auto& p) { return p.first == inputs; });
Paul's avatar
Format  
Paul committed
122
123
    if(it == tuning.end())
    {
Paul's avatar
Paul committed
124
        std::cout << "*********** Warning: CK tuning missing for config!" << std::endl;
Paul's avatar
Paul committed
125
126
        std::vector<std::pair<float, std::size_t>> w;
        std::transform(tuning.begin(), tuning.end(), std::back_inserter(w), [&](const auto& p) {
Paul's avatar
Format  
Paul committed
127
            if(inputs.size() < 3 or p.first.size() < 3)
Paul's avatar
Paul committed
128
                MIGRAPHX_THROW("Invalid CK config");
Paul's avatar
Format  
Paul committed
129
130
131
132
133
134
135
            auto avg_distance = std::inner_product(
                p.first.begin(),
                p.first.begin() + 3,
                inputs.begin(),
                0.0f,
                std::plus<>{},
                [](const auto& x, const auto& y) { return matrix_distance(x, y) / 3.0f; });
Paul's avatar
Paul committed
136
137
138
139
            return std::make_pair(avg_distance, p.second);
        });
        std::sort(w.begin(), w.end());
        std::size_t default_value = 4;
Paul's avatar
Format  
Paul committed
140
        if(not w.empty())
Paul's avatar
Paul committed
141
            default_value = w.front().second;
Paul's avatar
Paul committed
142
143
144
        auto tuning_val = value_of(MIGRAPHX_CK_TUNING_VALUE{}, default_value);
        std::cout << "*********** Warning: CK try tuning: " << tuning_val << std::endl;
        return tuning_val;
Paul's avatar
Paul committed
145
    }
Paul's avatar
Paul committed
146
147
148
    return it->second;
}

Paul's avatar
Paul committed
149
150
struct ck_gemm_compiler : compiler<ck_gemm_compiler>
{
Paul's avatar
Paul committed
151
152
    static std::string get_layout(const shape& s)
    {
Paul's avatar
Paul committed
153
        return transposed_matrix(s) ? "ck::tensor_layout::gemm::ColumnMajor"
Paul's avatar
Format  
Paul committed
154
                                    : "ck::tensor_layout::gemm::RowMajor";
Paul's avatar
Paul committed
155
156
157
    }

    static std::string get_type(const shape& s)
Paul's avatar
Paul committed
158
    {
Paul's avatar
Format  
Paul committed
159
        if(s.type() == shape::half_type)
Paul's avatar
Paul committed
160
161
162
            return "ck::half_t";
        return shape::cpp_type(s.type());
    }
Paul's avatar
Paul committed
163

Paul's avatar
Format  
Paul committed
164
    template <class Iterator, class F>
Paul's avatar
Paul committed
165
166
167
168
169
170
171
    static std::string ck_tuple(Iterator start, Iterator last, F f)
    {
        std::vector<std::string> s;
        std::transform(start, last, std::back_inserter(s), f);
        return "ck::Tuple<" + join_strings(s, ",") + ">";
    }

Paul's avatar
Paul committed
172
173
    static std::vector<shape> adjust_inputs(std::vector<shape> inputs, bool& swap_inputs)
    {
Paul's avatar
Format  
Paul committed
174
        swap_inputs  = false;
Paul's avatar
Paul committed
175
        auto c_shape = inputs.back();
Paul's avatar
Format  
Paul committed
176
        if(not transposed_matrix(c_shape))
Paul's avatar
Paul committed
177
178
179
180
181
182
183
184
185
186
187
            return inputs;
        std::vector<int64_t> perm(c_shape.lens().size());
        std::iota(perm.begin(), perm.end(), 0);
        std::swap(perm[perm.size() - 1], perm[perm.size() - 2]);
        std::transform(inputs.begin(), inputs.end(), inputs.begin(), [&](shape s) {
            return reorder_shape(s, perm);
        });
        swap_inputs = true;
        return inputs;
    }

188
189
    static std::size_t get_batch_count(const shape& s)
    {
Alan Turner's avatar
Alan Turner committed
190
191
        return std::accumulate(
            s.lens().rbegin() + 2, s.lens().rend(), std::size_t{1}, std::multiplies<std::size_t>());
192
193
194
195
196
    }

    static void fold_batch_dims(shape& s)
    {
        auto lens = s.lens();
Alan Turner's avatar
Alan Turner committed
197
        if(lens.size() <= 2)
198
199
            return;
        auto batch_count = get_batch_count(s);
Alan Turner's avatar
Alan Turner committed
200
201
202
        auto m1          = lens.at(lens.size() - 2);
        auto m2          = lens.at(lens.size() - 1);
        if(transposed_matrix(s))
203
204
205
206
207
208
209
210
            s = shape{s.type(), {m1, m2 * batch_count}};
        else
            s = shape{s.type(), {m1 * batch_count, m2}};
    }

    static void remove_batch_dims(shape& s)
    {
        auto lens = s.lens();
Alan Turner's avatar
Alan Turner committed
211
        if(lens.size() <= 2)
212
213
214
            return;
        auto m1 = lens.at(lens.size() - 2);
        auto m2 = lens.at(lens.size() - 1);
Alan Turner's avatar
Alan Turner committed
215
        s       = shape{s.type(), {m1, m2}};
216
217
    }

Paul's avatar
Paul committed
218
219
220
221
    std::vector<std::string> names() const { return {"ck_gemm", "gpu::ck_gemm"}; }

    operation compile_op(context& /* ctx */, const std::vector<shape>& inputs, const value& v) const
    {
Alan Turner's avatar
Alan Turner committed
222
223
224
        auto a_shape      = inputs[0];
        auto b_shape      = inputs[1];
        auto c_shape      = inputs.back();
225
        auto tuning_value = get_tuning_for({a_shape, b_shape, c_shape});
Paul's avatar
Paul committed
226

Alan Turner's avatar
Alan Turner committed
227
228
        auto rank           = a_shape.lens().size();
        auto b_strides      = b_shape.strides();
229
230
        bool can_fold_batch = rank >= 3 and b_strides[rank - 3] == 0;

Alan Turner's avatar
Alan Turner committed
231
232
233
234
235
        auto batch_count = get_batch_count(c_shape);
        auto m           = c_shape.lens()[rank - 2];
        m                = can_fold_batch ? m * batch_count : m;
        auto n           = c_shape.lens().back();
        auto k           = a_shape.lens().back();
236

Alan Turner's avatar
Alan Turner committed
237
238
239
240
241
242
        const bool transA = transposed_matrix(a_shape);
        const bool transB = transposed_matrix(b_shape);
        const bool transE = transposed_matrix(c_shape);
        const auto a_type = get_type(a_shape);
        const auto b_type = get_type(b_shape);
        const auto e_type = get_type(c_shape);
Alan Turner's avatar
Alan Turner committed
243
        std::vector<bool> ds_layout;
Alan Turner's avatar
Alan Turner committed
244
245
246
247
        std::transform(inputs.begin() + 2,
                       inputs.end() - 1,
                       std::back_inserter(ds_layout),
                       [](const auto& i) { return transposed_matrix(i); });
Alan Turner's avatar
Alan Turner committed
248
        std::vector<std::string> ds_type;
Alan Turner's avatar
Alan Turner committed
249
250
251
252
        std::transform(inputs.begin() + 2,
                       inputs.end() - 1,
                       std::back_inserter(ds_type),
                       [](const auto& i) { return get_type(i); });
253

Alan Turner's avatar
Alan Turner committed
254
255
        std::string ck_passthrough = "ck_passthrough";
        std::string cde_op         = ck_passthrough;
Paul's avatar
Paul committed
256
        assert(inputs.size() < 4 or v.contains("post"));
Paul's avatar
Format  
Paul committed
257
        if(v.contains("post"))
Paul's avatar
Paul committed
258
        {
259
            cde_op = v.at("post").to<std::string>();
Paul's avatar
Paul committed
260
261
        }

Alan Turner's avatar
Alan Turner committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
        auto problem = ck::tensor_operation::device::device_gemm_multiple_d::Problem{
            static_cast<ck::index_t>(m),
            static_cast<ck::index_t>(n),
            static_cast<ck::index_t>(k),
            transA,
            transB,
            transE,
            ds_layout,
            a_type,
            b_type,
            e_type,
            ds_type,
            ck_passthrough,
            ck_passthrough,
            cde_op};
Alan Turner's avatar
Alan Turner committed
277
278
279
280

        const auto include_header   = problem.GetIncludeHeader();
        const auto ck_headers       = problem.GetHeaders();
        const auto solutions        = problem.GetSolutions("gfx90a");
Alan Turner's avatar
Alan Turner committed
281
        const auto solution         = solutions.at(tuning_value);
Alan Turner's avatar
Alan Turner committed
282
283
284
285
        const auto template_str     = solution.template_str;
        const auto blocks_per_batch = solution.grid_size;
        const auto block_size       = solution.block_size;

Paul's avatar
Paul committed
286
        hip_compile_options options;
Alan Turner's avatar
Alan Turner committed
287
        options.embedded_headers = ck_headers;
Alan Turner's avatar
Alan Turner committed
288
        auto grid_size = can_fold_batch ? blocks_per_batch : batch_count * blocks_per_batch;
Paul's avatar
Paul committed
289
        options.set_launch_params(v, grid_size * block_size, block_size);
Paul's avatar
Paul committed
290
        options.inputs         = inputs;
Paul's avatar
Paul committed
291
        options.output         = c_shape;
Paul's avatar
Paul committed
292
        options.kernel_name    = v.get("kernel", "ck_gemm_kernel");
Paul's avatar
Paul committed
293
        options.virtual_inputs = inputs;
Alan Turner's avatar
Alan Turner committed
294
        if(can_fold_batch)
295
296
297
298
299
300
301
        {
            auto vinputs = inputs;
            fold_batch_dims(vinputs[0]);
            remove_batch_dims(vinputs[1]);
            std::for_each(vinputs.begin() + 2, vinputs.end(), fold_batch_dims);
            options.virtual_inputs = vinputs;
        }
Paul's avatar
Paul committed
302

Paul's avatar
Paul committed
303
        if(v.get("check", false) or enabled(MIGRAPHX_CK_DEBUG{}))
Paul's avatar
Paul committed
304
            options.params += " -DMIGRAPHX_CK_CHECK=1";
Alan Turner's avatar
Alan Turner committed
305

Paul's avatar
Format  
Paul committed
306
        auto src = interpolate_string(ck_gemm_kernel,
Alan Turner's avatar
Alan Turner committed
307
                                      {{"solution", template_str},
Alan Turner's avatar
Alan Turner committed
308
                                       {"include", include_header},
Paul's avatar
Format  
Paul committed
309
310
                                       {"params", enum_params(inputs.size(), "void * private_p")},
                                       {"args", enum_params(inputs.size(), "private_p")},
Paul's avatar
Paul committed
311
                                       {"blocks_per_batch", to_string(blocks_per_batch)},
Paul's avatar
Format  
Paul committed
312
313
                                       {"preamble", v.get("preamble", std::string{})},
                                       {"kernel", options.kernel_name}});
Alan Turner's avatar
Alan Turner committed
314

Paul's avatar
Paul committed
315
316
317
318
319
        return compile_hip_code_object(src, options);
    }

    compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
    {
Paul's avatar
Format  
Paul committed
320
321
        auto v      = op.to_value();
        v["kernel"] = "ck_gemm_kernel";
Paul's avatar
Paul committed
322
323
324
        if(not ins->module_inputs().empty())
        {
            auto* pm      = ins->module_inputs().front();
Paul's avatar
Format  
Paul committed
325
326
327
            v["preamble"] = generate_pointwise(*pm, "post_ck_gemm_function") +
                            "\nMIGRAPHX_LIFT_CLASS(post_ck_gemm, post_ck_gemm_function);";
            v["post"]   = "ck_function_adaptor<post_ck_gemm>";
Paul's avatar
Paul committed
328
            v["kernel"] = "ck_gemm_" + generate_name_from_ops(*pm) + "_kernel";
Paul's avatar
Format  
Paul committed
329
        }
Paul's avatar
Paul committed
330

Paul's avatar
Paul committed
331
        auto shapes = to_shapes(ins->inputs());
Paul's avatar
Paul committed
332
        return action_decorate(replace(compile_op(ctx, shapes, v)), [=] {
Paul's avatar
Format  
Paul committed
333
            if(enabled(MIGRAPHX_LOG_CK_GEMM{}))
Paul's avatar
Paul committed
334
335
336
337
            {
                std::vector<shape> gemm_shapes{shapes[0], shapes[1], shapes.back()};
                std::cout << "ck_gemm: " << to_json_string(to_value(gemm_shapes)) << std::endl;
            }
Paul's avatar
Paul committed
338
        });
Paul's avatar
Paul committed
339
340
341
342
343
344
    }
};

} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx