py.rst 8.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
.. py:module:: migraphx

Python Reference
================

shape
-----

.. py:class:: shape(type, lens, strides=None)

    Describes the shape of a tensor. This includes size, layout, and data type/

.. py:method:: type()

15
    An integer that represents the type.
16
17
18
19
20

    :rtype: int

.. py:method:: lens()

21
    A list of the lengths of the shape.
22
23
24
25
26

    :rtype: list[int]

.. py:method:: strides()

27
    A list of the strides of the shape.
28
29
30
31
32

    :rtype: list[int]

.. py:method:: elements()

33
    The number of elements in the shape.
34
35
36
37
38

    :rtype: int

.. py:method:: bytes()

39
    The number of bytes the shape uses.
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

    :rtype: int

.. py:method:: type_size()

    The number of bytes one element uses

    :rtype: int

.. py:method:: packed()

    Returns true if the shape is packed.

    :rtype: bool

.. py:method:: transposed()

    Returns true if the shape is transposed.

    :rtype: bool

.. py:method:: broadcasted()

    Returns true if the shape is broadcasted.

    :rtype: bool

.. py:method:: standard()

    Returns true if the shape is a standard shape. That is, the shape is both packed and not transposed.

    :rtype: bool

.. py:method:: scalar()

    Returns true if all strides are equal to 0 (scalar tensor).

    :rtype: bool


argument
--------

.. py:class:: argument(data)

    Construct an argument from a python buffer. This can include numpy arrays.

87
88
89
90
91
92
.. py:method:: data_ptr()

    Returns the address to the underlying argument data.

    :rtype: int

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
.. py:method:: get_shape()

    Returns the shape of the argument.

    :rtype: shape

.. py:method:: tolist()

    Convert the elements of the argument to a python list.

    :rtype: list


.. py:function:: generate_argument(s, seed=0)

    Generate an argument with random data.

    :param shape s: Shape of argument to generate.
111
    :param int seed: The seed used for random number generation.
112
113
114

    :rtype: argument

115
.. py:function:: fill_argument(s, value)
116

117
    Fill argument of shape s with value.
118

119
120
    :param shape s: Shape of argument to fill.
    :param int value: Value to fill in the argument.
121

122
123
124
125
126
127
128
129
130
131
    :rtype: argument

.. py:function:: argument_from_pointer(shape, address)

    Create argument from data stored in given address without copy.

    :param shape shape: Shape of the data stored in address.
    :param long address: Memory address of data from another source

    :rtype: argument 
132
133

target
134
------
135
136
137

.. py:class:: target()

138
    This represents the compilation target.
139
140
141
142
143

.. py:function:: get_target(name)

    Constructs the target.

144
    :param str name: The name of the target to construct. This can either be 'gpu' or 'ref'.
145
146
147
148

    :rtype: target


149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
module
------
.. py:method:: print()

    Prints the contents of the module as list of instructions.

.. py:method:: add_instruction(op, args, mod_args=[])
    
    Adds instruction into the module.

    :param operation op: 'migraphx.op' to be added as instruction.
    :param list[instruction] args: list of inputs to the op.
    :param list[module] mod_args: optional list of module arguments to the operator.
    :rtype instruction

164
165
166
167
168
169
170
.. py:method:: add_literal(data)

    Adds constant or literal data of provided shape into the module from python buffer which includes numpy array.    

    :param py::buffer data: Python buffer or numpy array 
    :rtype instruction 

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
.. py:method:: add_parameter(name, shape)
    
    Adds a parameter to the module with provided name and shape.

    :param str name: name of the parameter.
    :param shape shape: shape of the parameter.
    :rtype instruction

.. py:method:: add_return(args)

    Adds a return instruction into the module.

    :param list[instruction] args: instruction arguments which need to be returned from the module.
    :rtype instruction


187
188
189
190
191
program
-------

.. py:class:: program()

192
    Represents the computation graph to be compiled and run.
193
194
195

.. py:method:: clone()

196
    Make a copy of the program.
197
198
199

    :rtype: program

200
201
202
203
204
205
.. py:method:: get_parameter_names()
 
    Get all the input arguments' or parameters' names to the program as a list.

    :rtype list[str]

206
207
208
209
210
211
.. py:method:: get_parameter_shapes()

    Get the shapes of all the input parameters in the program.

    :rtype: dict[str, shape]

212
.. py:method:: get_output_shapes()
213

214
    Get the shapes of the final outputs of the program.
215

216
    :rtype: list[shape]
217

kahmed10's avatar
kahmed10 committed
218
.. py:method:: compile(t, offload_copy=True, fast_math=True)
219
220
221
222
223

    Compiles the program for the target and optimizes it.

    :param target t: This is the target to compile the program for.
    :param bool offload_copy: For targets with offloaded memory(such as the gpu), this will insert instructions during compilation to copy the input parameters to the offloaded memory and to copy the final result from the offloaded memory back to main memory.
kahmed10's avatar
kahmed10 committed
224
    :param bool fast_math: Optimize math functions to use faster approximate versions. There may be slight accuracy degredation when enabled.
225

226
227
228
229
230
231
232
233
234
235
236
237
238
.. py:method:: get_main_module()
    
    Get main module of the program.

    :rtype module

.. py:method:: create_module(name)
    
    Create and add a module of provided name into the program.

    :param str name : name of the new module.
    :rtype module

239
240
241
242
243
244
245
246
.. py:method:: run(params)

    Run the program.

    :param params: This is a map of the input parameters which will be used when running the program.
    :type params: dict[str, argument]

    :return: The result of the last instruction.
247
248
249
250
251
    :rtype: list[argument]

.. py:method:: sort()

    Sort the modules of the program such that instructions appear in topologically sorted order.
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

.. py:function:: quantize_fp16(prog, ins_names=["all"])

    Quantize the program to use fp16.

    :param program prog: Program to quantize.
    :param ins_names: List of instructions to quantize.
    :type ins_names: list[str]


.. py:function:: quantize_int8(prog, t, calibration=[], ins_names=["dot", "convolution"])

    Quantize the program to use int8.

    :param program prog: Program to quantize.
    :param target t: Target that will be used to run the calibration data.
    :param calibration: Calibration data used to decide the parameters to the int8 optimization.
    :type calibration: list[dict[str, argument]]
    :param ins_names: List of instructions to quantize.
    :type ins_names: list[str]


274
275
276
277
278
279
280
281
282
283
284
285
op
--
.. py::class:: op(name, kwargs)

    Construct an operation with name and arguments.
    
    :param str name : name of the operation, must be supported by MIGraphX.
    :param dict[str, any] kwargs: arguments to the operation.
    :rtype operation



286
287
288
parse_onnx
----------

289
.. py:function:: parse_onnx(filename, default_dim_value=1, map_input_dims={}, skip_unknown_operators=false, print_program_on_error=false, max_loop_iterations=10)
290
291
292
293

    Load and parse an onnx file.

    :param str filename: Path to file.
294
295
296
297
    :param str default_dim_value: default batch size to use (if not specified in onnx file).
    :param str map_input_dims: Explicitly specify the dims of an input.
    :param str skip_unknown_operators: Continue parsing onnx file if an unknown operator is found.
    :param str print_program_on_error: Print program if an error occurs.
298
    :param int max_loop_iterations: Maximum iteration number for the loop operator.
299
300
301
    :rtype: program

parse_tf
302
--------
303

304
.. py:function:: parse_tf(filename, is_nhwc=True, batch_size=1, map_input_dims=dict(), output_names=[])
305
306
307
308
309
310

    Load and parse an tensorflow protobuf file file.

    :param str filename: Path to file.
    :param bool is_nhwc: Use nhwc as default format.
    :param str batch_size: default batch size to use (if not specified in protobuf).
311
312
    :param dict[str, list[int]] map_input_dims: Optional arg to explictly specify dimensions of the inputs.
    :param list[str] output_names:  Optional argument specify names of the output nodes.
313
314
    :rtype: program

315
316
317
318
319
load
----

.. py:function:: load(filename, format='msgpack')

320
    Load a MIGraphX program.
321
322
323
324
325
326
327
328
329
330
331

    :param str filename: Path to file.
    :param str format: Format of file. Valid options are msgpack or json.

    :rtype: program

save
----

.. py:function:: save(p, filename, format='msgpack')

332
    Save a MIGraphX program.
333
334
335
336
337

    :param program p: Program to save.
    :param str filename: Path to file.
    :param str format: Format of file. Valid options are msgpack or json.