cpu_target.cpp 11.7 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6

#include <rtg/cpu/cpu_target.hpp>
#include <rtg/instruction.hpp>
#include <rtg/dfor.hpp>
#include <rtg/operators.hpp>

Paul's avatar
Paul committed
7
8
namespace rtg {
namespace cpu {
Paul's avatar
Paul committed
9

10
11
12
template <typename T>
T zero(const T& x) { return T(0); }

Paul's avatar
Paul committed
13
14
15
16
struct cpu_convolution
{
    convolution op;

Paul's avatar
Paul committed
17
18
    std::string name() const { return "cpu::convolution"; }
    shape compute_shape(std::vector<shape> inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
19
    argument compute(shape output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
20
    {
Paul's avatar
Paul committed
21
        argument result{output_shape};
Paul's avatar
Paul committed
22
23
24
25
26
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
            auto in_n = input.get_shape().lens()[0];
            auto in_c = input.get_shape().lens()[1];
            auto in_h = input.get_shape().lens()[2];
            auto in_w = input.get_shape().lens()[3];
Paul's avatar
Paul committed
27

Paul's avatar
Paul committed
28
29
30
            auto wei_c = weights.get_shape().lens()[1];
            auto wei_h = weights.get_shape().lens()[2];
            auto wei_w = weights.get_shape().lens()[3];
Paul's avatar
Paul committed
31

Paul's avatar
Paul committed
32
33
34
35
            dfor(in_n, in_c, in_h, in_w)(
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x = i * op.stride[0] - op.padding[0];
                    const int start_y = j * op.stride[1] - op.padding[1];
Paul's avatar
Paul committed
36

Paul's avatar
Paul committed
37
38
39
40
41
42
43
44
45
46
                    double acc = 0;
                    dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc += input(o, k, in_x, in_y) * weights(w, k, x, y);
                        }
                    });
                    output(o, w, i, j) = acc;
Paul's avatar
Paul committed
47
48
49
50
51
52
                });
        });
        return result;
    }
};

53
54
55
56
struct cpu_gemm
{
    gemm op;
    std::string name() const { return "cpu::gemm"; }
57
    shape compute_shape(std::vector<shape> inputs) const
58
59
60
61
62
63
    {
        return op.compute_shape(inputs);
    }

    argument compute(shape output_shape, std::vector<argument> args) const 
    {
64
65
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto C, auto A, auto B) {
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
            auto M = A.get_shape().lens()[0];
            auto N = B.get_shape().lens()[1];
            auto K = B.get_shape().lens()[0];

            auto a = A.data();
            auto b = B.data();
            auto c = C.data();
            for (int ii = 0; ii < M; ii++) {
              for (int jj = 0; jj < N; jj++) {
                c[ii*N+jj] = 0;
              }
            }
            for (int ii = 0; ii < M; ii++) {
              for (int kk = 0; kk < K; kk++) {
                auto aik = a[ii*K+kk];
                auto* bkj = &b[kk*N];
                auto* cij = &c[ii*N];
                for (int jj = 0; jj < N; jj++, cij++, bkj++) {
                  *cij += aik*(*bkj);
                }
              }
            }
        });
89
        return result;
90
91
92
    }
};

93
struct identity_op
Paul's avatar
Paul committed
94
{
95
    std::string name() const {return "cpu::identity"; }
96
    auto fcn() const { return [](auto x) { return x; }; }
97
};
Paul's avatar
Paul committed
98

99
100
101
struct abs_op 
{
    std::string name() const {return "cpu::abs"; }
102
    auto fcn() const { return [](auto x) { return std::abs(x); }; }
103
104
105
106
107
};

struct exp_op 
{
    std::string name() const {return "cpu::exp"; }
108
    auto fcn() const { return [](auto x) { return std::exp(x); }; }
109
110
111
112
113
};

struct sin_op 
{
    std::string name() const {return "cpu::sin"; }
114
    auto fcn() const { return [](auto x) { return std::sin(x); }; }
115
116
117
118
119
};

struct cos_op 
{
    std::string name() const {return "cpu::cos"; }
120
    auto fcn() const { return [](auto x) { return std::cos(x); }; }
121
122
123
124
125
};

struct tan_op 
{
    std::string name() const {return "cpu::tan"; }
126
    auto fcn() const { return [](auto x) { return std::tan(x); }; }
127
128
129
130
131
};

struct asin_op 
{
    std::string name() const {return "cpu::asin"; }
132
    auto fcn() const { return [](auto x) { return std::asin(x); }; }
133
134
135
136
137
};

struct acos_op 
{
    std::string name() const {return "cpu::acos"; }
138
    auto fcn() const { return [](auto x) { return std::acos(x); }; }
139
140
141
142
143
};

struct atan_op 
{
    std::string name() const {return "cpu::atan"; }
144
    auto fcn() const { return [](auto x) { return std::atan(x); }; }
145
146
147
148
149
};

struct tanh_op
{
    std::string name() const {return "cpu::tanh"; }
150
    auto fcn() const { return [](auto x) { return std::tanh(x); }; }
151
152
153
154
155
};

struct sigmoid_op
{
    std::string name() const {return "cpu::sigmoid"; }
156
    auto fcn() const { return [](auto x) { return 1.f/(1.f + std::exp(-x)); }; }
157
158
159
160
161
};

struct neg_op
{
    std::string name() const {return "cpu::neg"; }
162
    auto fcn() const { return [](auto x) { return -x; }; }
163
164
165
166
167
168
169
170
171
172
173
174
};

struct relu_op
{
    std::string name() const {return "cpu::relu"; }
    auto fcn() const { return [](auto x) { return x > 0 ? x : 0; }; }
};

template <typename Op>
struct cpu_unary
{
  Op op;
175
  std::string name() const { return op.name(); }
176
177
178
179
180
181
182
183
184
  shape compute_shape(std::vector<shape> inputs) const { return inputs.front(); }
  argument compute(shape output_shape, std::vector<argument> args) const
  {
      argument result{output_shape};
      result.visit([&](auto output) {
          args[0].visit([&](auto input) {
              std::transform(input.begin(), input.end(), output.begin(), op.fcn());
          });
      });
185
186
187
188
      return result;
  }
};

189
struct softmax2d
190
{
191
  std::string name() const { return "cpu::softmax2d"; }
192
193
194
195
  shape compute_shape(std::vector<shape> inputs) const { return inputs.front(); }
  argument compute(shape output_shape, std::vector<argument> args) const
  {
      argument result{output_shape};
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
      visit_all(result, args[0])([&](auto output, auto input) {
          using value_type = typename decltype(input)::value_type;
          auto nb = input.get_shape().lens()[0];
          auto nc = input.get_shape().lens()[1]; 
          auto nh = input.get_shape().lens()[2]; 
          auto nw = input.get_shape().lens()[3];
          for (int b = 0; b < nb; b++) {
              for (int i = 0; i < nh; i++) {
                  for (int j = 0; j < nw; j++) {
                      value_type cmax = std::numeric_limits<value_type>::lowest();
                      for (int c = 0; c < nc; c++) {
                          cmax = std::max(cmax, input(b, c, i, j)); 
                      }
                      for (int c = 0; c < nc; c++) {
                          output(b, c, i, j) = std::exp(input(b, c, i, j)-cmax);
                      }
                      value_type sum = value_type(0);
                      for (int c = 0; c < nc; c++) {
                          sum += output(b, c, i, j);
                      }
                      for (int c = 0; c < nc; c++) {
                          output(b, c, i, j) = output(b, c, i, j)/sum;
                      }

//                       for (int c = 0; c < nc; c++) {
//                           output(b, c, i, j) = input(b, c, i, j);
//                       }
                  }
              }
         } 
226
      });
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
      return result;
  }
};

struct add_op
{
    std::string name() const { return "add"; }
    auto fcn() const { return [](auto x, auto y) {return x + y;};}
};

struct sub_op
{
    std::string name() const { return "sub"; }
    auto fcn() const { return [](auto x, auto y) {return x - y;};}
};

struct mul_op
{
    std::string name() const { return "mul"; }
    auto fcn() const { return [](auto x, auto y) {return x * y;};}
};

struct div_op
{
    std::string name() const { return "div"; }
    auto fcn() const { return [](auto x, auto y) {return x / y;};}
};

template <typename Op>
struct cpu_binary
{
  Op op;
  std::string name() const { op.name(); }
  shape compute_shape(std::vector<shape> inputs) const { return inputs.front(); }
  argument compute(shape output_shape, std::vector<argument> args) const
  {
      argument result{output_shape};
      visit_all(result, args[0], args[1])([&](auto output, auto input1, auto input2) {
          std::transform(input1.begin(), input1.end(), input2.begin(), output.begin(), op.fcn());
          });
      return result;
  }
Paul's avatar
Paul committed
269
270
271
272
};

struct cpu_apply
{
Paul's avatar
Paul committed
273
    program* prog;
Paul's avatar
Paul committed
274
275
276

    void apply()
    {
Paul's avatar
Paul committed
277
278
279
280
        for(auto it = prog->begin(); it != prog->end(); it++)
        {
            if(it->op.name() == "convolution")
            {
Paul's avatar
Paul committed
281
                apply_convolution(it);
Paul's avatar
Paul committed
282
283
284
            }
            else if(it->op.name() == "activation")
            {
Paul's avatar
Paul committed
285
286
                apply_activation(it);
            }
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
            else if(it->op.name() == "identity")
            {
                apply_identity(it);
            }
            else if(it->op.name() == "softmax")
            {
                apply_softmax(it);
            }
            else if(it->op.name() == "tanh")
            {
                apply_tanh(it);
            }
            else if(it->op.name() == "sigmoid")
            {
                apply_sigmoid(it);
            }
            else if(it->op.name() == "exp")
            {
                apply_exp(it);
            }
            else if(it->op.name() == "neg")
            {
                apply_neg(it);
            }
            else if(it->op.name() == "sin")
            {
                apply_sin(it);
            }
            else if(it->op.name() == "cos")
            {
                apply_cos(it);
            }
            else if(it->op.name() == "tan")
            {
                apply_tan(it);
            }
            else if(it->op.name() == "gemm")
            {
                apply_gemm(it);
            }
Paul's avatar
Paul committed
327
328
329
330
331
332
333
334
335
        }
    }

    void apply_convolution(instruction_ref ins)
    {
        auto&& op = any_cast<convolution>(ins->op);
        prog->replace_instruction(ins, cpu_convolution{op}, ins->arguments);
    }

336
337
338
339
340
341
    void apply_gemm(instruction_ref ins)
    {
        auto&& op = any_cast<gemm>(ins->op);
        prog->replace_instruction(ins, cpu_gemm{op}, ins->arguments);
    }

Paul's avatar
Paul committed
342
343
344
345
    void apply_activation(instruction_ref ins)
    {
        auto&& op = any_cast<activation>(ins->op);
        if(op.mode == "relu")
346
            prog->replace_instruction(ins, cpu_unary<relu_op>{}, ins->arguments);
Paul's avatar
Paul committed
347
    }
348
349
350
351
352
353
354
355
356
357

    void apply_identity(instruction_ref ins)
    {
        auto&& op = any_cast<identity>(ins->op);
        prog->replace_instruction(ins, cpu_unary<identity_op>{}, ins->arguments);
    }

    void apply_softmax(instruction_ref ins)
    {
        auto&& op = any_cast<softmax>(ins->op);
358
        prog->replace_instruction(ins, softmax2d{}, ins->arguments);
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
    }

    void apply_tanh(instruction_ref ins)
    {
        auto&& op = any_cast<tanh>(ins->op);
        prog->replace_instruction(ins, cpu_unary<tanh_op>{}, ins->arguments);
    }

    void apply_sigmoid(instruction_ref ins)
    {
        auto&& op = any_cast<sigmoid>(ins->op);
        prog->replace_instruction(ins, cpu_unary<sigmoid_op>{}, ins->arguments);
    }

    void apply_exp(instruction_ref ins)
    {
        auto&& op = any_cast<exp>(ins->op);
        prog->replace_instruction(ins, cpu_unary<exp_op>{}, ins->arguments);
    }

    void apply_neg(instruction_ref ins)
    {
        auto&& op = any_cast<neg>(ins->op);
        prog->replace_instruction(ins, cpu_unary<neg_op>{}, ins->arguments);
    }

    void apply_sin(instruction_ref ins)
    {
        auto&& op = any_cast<sin>(ins->op);
        prog->replace_instruction(ins, cpu_unary<sin_op>{}, ins->arguments);
    }

    void apply_cos(instruction_ref ins)
    {
        auto&& op = any_cast<cos>(ins->op);
        prog->replace_instruction(ins, cpu_unary<cos_op>{}, ins->arguments);
    }

    void apply_tan(instruction_ref ins)
    {
        auto&& op = any_cast<tan>(ins->op);
        prog->replace_instruction(ins, cpu_unary<tan_op>{}, ins->arguments);
    }
Paul's avatar
Paul committed
402
403
};

Paul's avatar
Paul committed
404
std::string cpu_target::name() const { return "cpu"; }
Paul's avatar
Paul committed
405

Paul's avatar
Paul committed
406
void cpu_target::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
407
408
409
410

} // namespace cpu

} // namespace rtg