"docs/en_US/vscode:/vscode.git/clone" did not exist on "7eee68f9edecc18e3b52fb4581f0e62caf488035"
layernorm.cpp 3.87 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/gpu/compile_hip.hpp>
#include <migraphx/gpu/compile_gen.hpp>

#include <migraphx/cpp_generator.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/reduce_dims.hpp>
#include <migraphx/stringutils.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {

using namespace migraphx::gpu::gen; // NOLINT

static const char* const layernorm_kernel = R"__migraphx__(
#include <migraphx/kernels/index.hpp>
#include <migraphx/kernels/layernorm.hpp>
#include <migraphx/kernels/vectorize.hpp>
Paul's avatar
Paul committed
22
#include <migraphx/kernels/preload.hpp>
Paul's avatar
Paul committed
23
24
25
26
#include <args.hpp>

namespace migraphx {

Paul's avatar
Paul committed
27
28
${preamble}

Paul's avatar
Paul committed
29
extern "C" {
Paul's avatar
Paul committed
30
__global__ void ${kernel}(${params}) 
Paul's avatar
Paul committed
31
{
Paul's avatar
Paul committed
32
33
    auto idx = make_index();
    transform_args(make_tensors(), rotate_last(), ${transformers})(${args})([](auto... xs) {
Paul's avatar
Paul committed
34
        ${layernorm}<${axis}>(${post}, xs...);
Paul's avatar
Paul committed
35
36
37
38
39
40
41
42
43
44
45
    });
}
    
}

} // namespace migraphx

)__migraphx__";

struct layernorm_compiler : compiler<layernorm_compiler>
{
Paul's avatar
Format  
Paul committed
46
47
48
49
    std::vector<std::string> names() const
    {
        return {"layernorm", "gpu::prelayernorm", "gpu::preadd_layernorm"};
    }
Paul's avatar
Paul committed
50
51
52
53
54
55
56
57
58
59
60
61

    operation compile_op(context& ctx, const std::vector<shape>& inputs, const value& v) const
    {
        // TODO: Use reduce_dims
        auto axis  = inputs.front().lens().size() - 1;
        auto faxis = find_fast_axis({inputs.front()});
        vectorize vec{};
        // Vectorize if the axis is a reduction axis
        if(inputs.back().lens()[faxis] == 1)
        {
            vec = vectorize::elements(faxis, inputs);
        }
Paul's avatar
Format  
Paul committed
62
        auto preloads   = preload::broadcasts(axis, inputs);
Paul's avatar
Paul committed
63
64
65
66
67
68
69
70
        auto relements  = inputs[0].lens()[axis] / vec.size;
        auto nelements  = inputs.back().elements() / relements;
        auto block_size = compute_block_size(relements, 256);
        hip_compile_options options;
        options.set_launch_params(
            v, compute_global_for(ctx, nelements * block_size, 256), block_size);
        options.output      = inputs.back();
        options.inputs      = inputs;
Paul's avatar
Format  
Paul committed
71
        options.kernel_name = v.get("kernel", "layernorm_kernel");
Paul's avatar
Paul committed
72

Paul's avatar
Format  
Paul committed
73
74
75
        auto src = interpolate_string(layernorm_kernel,
                                      {{"kernel", options.kernel_name},
                                       {"params", enum_params(inputs.size(), "void * private_p")},
Paul's avatar
Paul committed
76
77
78
79
                                       {"args", enum_params(inputs.size(), "private_p")},
                                       {"transformers", make_transformer_args(preloads, vec)},
                                       {"post", v.get("post", std::string{"op::id{}"})},
                                       {"preamble", v.get("preamble", std::string{})},
Paul's avatar
Paul committed
80
                                       {"layernorm", v.get("layernorm", std::string{"layernorm"})},
Paul's avatar
Paul committed
81
                                       {"axis", to_string(axis)}});
Paul's avatar
Paul committed
82
83
84
85
86
87

        return compile_hip_code_object(src, options);
    }

    compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
    {
Paul's avatar
Format  
Paul committed
88
        auto v         = op.to_value();
Paul's avatar
Paul committed
89
        v["layernorm"] = "layernorm";
Paul's avatar
Format  
Paul committed
90
91
        v["kernel"]    = "layernorm_kernel";
        if(op.name() == "gpu::preadd_layernorm")
Paul's avatar
Paul committed
92
93
        {
            v["layernorm"] = "add_layernorm";
Paul's avatar
Format  
Paul committed
94
            v["kernel"]    = "add_layernorm_kernel";
Paul's avatar
Paul committed
95
        }
Paul's avatar
Format  
Paul committed
96
        if(not ins->module_inputs().empty())
Paul's avatar
Paul committed
97
        {
Paul's avatar
Format  
Paul committed
98
99
100
            auto* pm      = ins->module_inputs().front();
            v["preamble"] = generate_pointwise(*pm, "post_layernorm");
            v["post"]     = "MIGRAPHX_LIFT(post_layernorm)";
Paul's avatar
Format  
Paul committed
101
102
            v["kernel"] =
                v["layernorm"].to<std::string>() + "_" + generate_name_from_ops(*pm) + "_kernel";
Paul's avatar
Paul committed
103
104
        }
        return replace(compile_op(ctx, to_shapes(ins->inputs()), v));
Paul's avatar
Paul committed
105
106
107
108
109
110
    }
};

} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx