gemm_impl.cpp 17.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
24
#include <rocblas/rocblas.h>
25
#include <migraphx/gpu/gemm_impl.hpp>
26
#include <migraphx/reduce_dims.hpp>
27
#include <migraphx/permutation.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
28

29
30
31
32
33
34
// #include <migraphx/config.hpp>
// #include <migraphx/gpu/context.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/operation.hpp>
#include <migraphx/time.hpp>

Shucai Xiao's avatar
Shucai Xiao committed
35
36
37
38
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {

39
rocblas_datatype get_type(shape::type_t type)
Shucai Xiao's avatar
Shucai Xiao committed
40
{
41
    switch(type)
42
    {
43
44
45
46
47
48
49
    case shape::double_type: return rocblas_datatype_f64_r;
    case shape::float_type: return rocblas_datatype_f32_r;
    case shape::half_type: return rocblas_datatype_f16_r;
    case shape::int8_type: return rocblas_datatype_i8_r;
    case shape::uint8_type: return rocblas_datatype_u8_r;
    case shape::int32_type: return rocblas_datatype_i32_r;
    case shape::uint32_type: return rocblas_datatype_u32_r;
Paul Fultz II's avatar
Paul Fultz II committed
50
    case shape::tuple_type:
51
    case shape::bool_type:
52
53
54
55
    case shape::uint16_type:
    case shape::int16_type:
    case shape::int64_type:
    case shape::uint64_type: MIGRAPHX_THROW("ROCBLAS_GEMM: data type not supported!");
56
    }
57
58

    MIGRAPHX_THROW("ROCBLAS_GEMM: data type not supported!");
59
60
}

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
void blas_shape(const shape& s)
{
    if(s.lens().size() < 2)
        return;
    if(std::none_of(s.strides().end() - 2, s.strides().end(), [&](auto i) { return i == 1; }))
        MIGRAPHX_THROW("GPU_GEMM: needs to have one matrix stride as 1");
    if(s.lens().size() < 3)
        return;
    shape batch_shape{s.type(),
                      {s.lens().begin(), s.lens().end() - 2},
                      {s.strides().begin(), s.strides().end() - 2}};
    auto batch_shapes = reduce_dims({batch_shape});
    if(batch_shapes.front().lens().size() != 1)
        MIGRAPHX_THROW("GPU_GEMM: Batch dimension is not collapsible");
}

77
78
79
80
81
82
83
84
85
86
87
88
89
shape transpose_batch(const shape& s, unsigned trans_batch)
{
    if(trans_batch == 0)
        return s;
    if(s.lens().size() < 3)
        return s;
    auto batch = s.lens().size() - 3;
    std::vector<int64_t> perm(s.lens().size());
    std::iota(perm.begin(), perm.end(), 0);
    std::swap(perm[batch], perm[batch + trans_batch]);
    return shape::from_permutation(s.type(), s.lens(), perm);
}

90
91
92
93
94
95
96
97
98
template <class R, class... Ts, class... Us>
R rocblas_invoke(R (*f)(Ts...), Us... xs)
{
    if constexpr(sizeof...(Ts) == sizeof...(Us))
        return f(xs...);
    else
        return f(xs..., nullptr, nullptr);
}

99
100
101
102
103
104
105
106
107
108
109
110
static bool is_transposed(const shape& s)
{
    if(not s.transposed())
        return false;
    return s.strides().back() != 1;
}

static rocblas_int get_batch_stride(const argument& a)
{
    return a.get_shape().strides()[a.get_shape().strides().size() - 3];
}

111
template <class T>
Shucai Xiao's avatar
Shucai Xiao committed
112
113
114
115
116
void gemm_impl(context& ctx,
               const shape& output_shape,
               const std::vector<argument>& args,
               T alpha,
               T beta,
117
118
               bool int8_x4_format,
               bool compute_fp32)
Shucai Xiao's avatar
Shucai Xiao committed
119
{
120
    const bool is_3inputs = (args.size() == 4);
121
    if(not is_3inputs)
122
123
124
125
    {
        beta = 0;
    }

126
127
    bool transa     = is_transposed(args[0].get_shape());
    bool transb     = is_transposed(args[1].get_shape());
128
129
130
131
132
    auto n_dim      = output_shape.lens().size();
    auto dim_1      = n_dim - 1;
    auto dim_0      = n_dim - 2;
    rocblas_int lda = args[0].get_shape().strides()[transa ? dim_1 : dim_0];
    rocblas_int ldb = args[1].get_shape().strides()[transb ? dim_1 : dim_0];
133
    rocblas_int ldc = args[2].get_shape().strides()[dim_0];
134
    rocblas_int ldd = is_3inputs ? args[3].get_shape().strides()[dim_0] : ldc;
135

136
137
138
    rocblas_datatype arg_type = get_type(args[0].get_shape().type());
    auto output_type          = arg_type;
    if(output_type == rocblas_datatype_i8_r)
Shucai Xiao's avatar
Shucai Xiao committed
139
    {
140
        output_type = rocblas_datatype_i32_r;
Shucai Xiao's avatar
Shucai Xiao committed
141
    }
142
    auto compute_type = output_type;
143
144
145
146
147
    if(compute_fp32)
    {
        if(arg_type == rocblas_datatype_f16_r)
            compute_type = rocblas_datatype_f32_r;
    }
Shucai Xiao's avatar
Shucai Xiao committed
148

Shucai Xiao's avatar
Shucai Xiao committed
149
150
151
152
153
#if ROCBLAS_VERSION_MAJOR >= 2 && ROCBLAS_VERSION_MINOR >= 38
    rocblas_gemm_flags flag =
        int8_x4_format ? rocblas_gemm_flags_pack_int8x4 : rocblas_gemm_flags_none;
#else
    (void)int8_x4_format;
154
    int flag = 0;
Shucai Xiao's avatar
Shucai Xiao committed
155
156
#endif

Shucai Xiao's avatar
Shucai Xiao committed
157
158
159
    auto a_lens = args[0].get_shape().lens();
    auto b_lens = args[1].get_shape().lens();
    output_shape.visit_type([&](auto as) {
160
161
162
163
164
165
166
167
168
169
170
171
172
        auto alpha_r = as(alpha);
        auto beta_r  = as(beta);

        // use void pointer to select different data type if using fp32 mode
        void* alpha_v = &alpha_r;
        void* beta_v  = &beta_r;

        if(compute_fp32)
        {
            alpha_v = &alpha;
            beta_v  = &beta;
        }

Shucai Xiao's avatar
Shucai Xiao committed
173
174
175
176
        auto out_lens   = output_shape.lens();
        rocblas_int m   = out_lens[dim_0];
        rocblas_int n   = out_lens[dim_1];
        rocblas_int k   = args[0].get_shape().lens()[dim_1];
Shucai Xiao's avatar
Shucai Xiao committed
177
        auto to_pointer = [&](auto&& arg) { return as.from(arg.data()); };
Shucai Xiao's avatar
Shucai Xiao committed
178
        if(args[0].get_shape().type() == shape::int8_type and (k % 4) != 0 and int8_x4_format)
179
180
181
        {
            MIGRAPHX_THROW("ROCBLAS_GEMM: k size of int8 type input must be mutlple of 4!");
        }
Shucai Xiao's avatar
Shucai Xiao committed
182

Shucai Xiao's avatar
Shucai Xiao committed
183
184
        auto num_matrices = std::accumulate(
            out_lens.rbegin() + 2, out_lens.rend(), std::size_t{1}, std::multiplies<std::size_t>());
185
        if(num_matrices == 1 or (num_matrices > 1 and get_batch_stride(args[1]) == 0))
Shucai Xiao's avatar
Shucai Xiao committed
186
        {
187
188
189
190
191
            // If the batch dimension of B is broadcasted, then we can
            // multiply m by the batch_size and use rocblas_gemm_ex
            // instead of rocblas_gemm_strided_batched_ex.
            m *= num_matrices;

Shucai Xiao's avatar
Shucai Xiao committed
192
            // the rocblas_gemm API handles inputs and output matrices as
Shucai Xiao's avatar
Shucai Xiao committed
193
194
195
            // column-major format. When doing a C = A * B, we actually do
            // C^T = (B^T) * (A^T). That is the reason we input args[1] as
            // A and args[0] as B in calling the rocblas_gemm.
196
197
198
199
200
201
202
            rocblas_invoke(&rocblas_gemm_ex,
                           ctx.get_stream().get_rocblas(),
                           transb ? rocblas_operation_transpose : rocblas_operation_none,
                           transa ? rocblas_operation_transpose : rocblas_operation_none,
                           n,
                           m,
                           k,
203
                           alpha_v,
204
205
206
207
208
209
                           to_pointer(args.at(1)),
                           arg_type,
                           ldb,
                           to_pointer(args.at(0)),
                           arg_type,
                           lda,
210
                           beta_v,
211
212
213
214
215
                           to_pointer(args[2]),
                           output_type,
                           ldc,
                           is_3inputs ? to_pointer(args[3]) : to_pointer(args[2]),
                           output_type,
216
                           ldd,
217
218
219
                           compute_type,
                           rocblas_gemm_algo_standard,
                           0,
Shucai Xiao's avatar
Shucai Xiao committed
220
                           flag);
Shucai Xiao's avatar
Shucai Xiao committed
221
222
223
        }
        else
        {
224
225
226
            auto a_stride = get_batch_stride(args[0]);
            auto b_stride = get_batch_stride(args[1]);
            auto c_stride = get_batch_stride(args[2]);
227
            auto d_stride = is_3inputs ? get_batch_stride(args[3]) : c_stride;
228
229
230
231
232
233
234
            rocblas_invoke(&rocblas_gemm_strided_batched_ex,
                           ctx.get_stream().get_rocblas(),
                           transb ? rocblas_operation_transpose : rocblas_operation_none,
                           transa ? rocblas_operation_transpose : rocblas_operation_none,
                           n,
                           m,
                           k,
235
                           alpha_v,
236
237
238
                           to_pointer(args.at(1)),
                           arg_type,
                           ldb,
239
                           b_stride,
240
241
242
                           to_pointer(args.at(0)),
                           arg_type,
                           lda,
243
                           a_stride,
244
                           beta_v,
245
246
247
                           to_pointer(args[2]),
                           output_type,
                           ldc,
248
                           c_stride,
249
250
                           is_3inputs ? to_pointer(args[3]) : to_pointer(args[2]),
                           output_type,
251
252
                           ldd,
                           d_stride,
253
254
255
256
                           num_matrices,
                           compute_type,
                           rocblas_gemm_algo_standard,
                           0,
Shucai Xiao's avatar
Shucai Xiao committed
257
                           flag);
Shucai Xiao's avatar
Shucai Xiao committed
258
259
        }
    });
260
}
Shucai Xiao's avatar
Shucai Xiao committed
261

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
std::vector<argument> generate_arguments(const std::vector<shape>& shapes, unsigned long seed = 0)
{
    std::vector<argument> args;
    std::transform(shapes.begin(), shapes.end(), std::back_inserter(args), [&](auto& s) {
        return to_gpu(generate_argument(s, seed++));
    });
    return args;
}


// from perf.cpp
using milliseconds = std::chrono::duration<double, std::milli>;
std::pair<double, double>
time_op(context& ictx, operation op, const std::vector<shape>& inputs, int n)
{

    // TODO: Use std::ref
    migraphx::context ctx = ictx;
    auto& gctx            = any_cast<migraphx::gpu::context>(ctx);
    auto output           = op.compute_shape(inputs);
    // op.finalize(ctx, output, inputs);
    auto args = generate_arguments(inputs);
    auto run  = [&] {
        op.compute(ctx, output, args);
        ctx.finish();
    };
    gctx.enable_perf_measurement();
    run();
    double host_time   = 0.0;
    double device_time = 0.0;
    for(auto i : range(n))
    {
        (void)i;
        host_time += time<milliseconds>(run);
        device_time += gctx.get_elapsed_ms();
    }
    return std::make_pair(host_time / n, device_time / n);
}

301
302
303
304
void gemm(context& ctx,
          const shape& output_shape,
          const std::vector<argument>& args,
          float alpha,
Shucai Xiao's avatar
Shucai Xiao committed
305
          float beta,
306
307
          bool int8_x4_format,
          bool compute_fp32)
308
{
309
    gemm_impl(ctx, output_shape, args, alpha, beta, int8_x4_format, compute_fp32);
310
311
312
313
314
315
}

void gemm(context& ctx,
          const shape& output_shape,
          const std::vector<argument>& args,
          int32_t alpha,
Shucai Xiao's avatar
Shucai Xiao committed
316
          int32_t beta,
317
318
          bool int8_x4_format,
          bool compute_fp32)
319
{
320
    gemm_impl(ctx, output_shape, args, alpha, beta, int8_x4_format, compute_fp32);
Shucai Xiao's avatar
Shucai Xiao committed
321
322
}

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482


/**
 * Create a list of the arguments needed for rocBLAS GEMM calls, from
 * a set of MigraphX arguments.
*/
template <class T>
auto create_gemm_args
(context& ctx,
               const shape& output_shape,
               const std::vector<argument>& inputs,
               T alpha,
               T beta,
               bool int8_x4_format,
               bool compute_fp32)
{
    const bool is_3inputs = (inputs.size() == 4);
    if(not is_3inputs)
    {
        beta = 0;
    }

    bool transa     = is_transposed(inputs[0].get_shape());
    bool transb     = is_transposed(inputs[1].get_shape());
    auto n_dim      = output_shape.lens().size();
    auto dim_1      = n_dim - 1;
    auto dim_0      = n_dim - 2;
    rocblas_int lda = inputs[0].get_shape().strides()[transa ? dim_1 : dim_0];
    rocblas_int ldb = inputs[1].get_shape().strides()[transb ? dim_1 : dim_0];
    rocblas_int ldc = inputs[2].get_shape().strides()[dim_0];
    rocblas_int ldd = is_3inputs ? inputs[3].get_shape().strides()[dim_0] : ldc;

    rocblas_datatype arg_type = get_type(inputs[0].get_shape().type());
    auto output_type          = arg_type;
    if(output_type == rocblas_datatype_i8_r)
    {
        output_type = rocblas_datatype_i32_r;
    }
    auto compute_type = output_type;
    if(compute_fp32)
    {
        if(arg_type == rocblas_datatype_f16_r)
            compute_type = rocblas_datatype_f32_r;
    }

#if ROCBLAS_VERSION_MAJOR >= 2 && ROCBLAS_VERSION_MINOR >= 38
    rocblas_gemm_flags flag =
        int8_x4_format ? rocblas_gemm_flags_pack_int8x4 : rocblas_gemm_flags_none;
#else
    (void)int8_x4_format;
    int flag = 0;
#endif

    auto a_lens = inputs[0].get_shape().lens();
    auto b_lens = inputs[1].get_shape().lens();
    return output_shape.visit_type([&](auto as) {
        auto alpha_r = as(alpha);
        auto beta_r  = as(beta);

        // use void pointer to select different data type if using fp32 mode
        void* alpha_v = &alpha_r;
        void* beta_v  = &beta_r;

        if(compute_fp32)
        {
            alpha_v = &alpha;
            beta_v  = &beta;
        }

        auto out_lens   = output_shape.lens();
        rocblas_int m   = out_lens[dim_0];
        rocblas_int n   = out_lens[dim_1];
        rocblas_int k   = inputs[0].get_shape().lens()[dim_1];
        auto to_pointer = [&](auto&& arg) { return as.from(arg.data()); };
        if(inputs[0].get_shape().type() == shape::int8_type and (k % 4) != 0 and int8_x4_format)
        {
            MIGRAPHX_THROW("ROCBLAS_GEMM: k size of int8 type input must be mutlple of 4!");
        }

        auto num_matrices = std::accumulate(
            out_lens.rbegin() + 2, out_lens.rend(), std::size_t{1}, std::multiplies<std::size_t>());
        if(num_matrices == 1 or (num_matrices > 1 and get_batch_stride(inputs[1]) == 0))
        {
            // If the batch dimension of B is broadcasted, then we can
            // multiply m by the batch_size and use rocblas_gemm_ex
            // instead of rocblas_gemm_strided_batched_ex.
            m *= num_matrices;
            return pack (

            // the rocblas_gemm API handles inputs and output matrices as
            // column-major format. When doing a C = A * B, we actually do
            // C^T = (B^T) * (A^T). That is the reason we input inputs[1] as
            // A and inputs[0] as B in calling the rocblas_gemm.
            // rocblas_invoke(&rocblas_gemm_ex,
                           ctx.get_stream().get_rocblas(),
                           transb ? rocblas_operation_transpose : rocblas_operation_none,
                           transa ? rocblas_operation_transpose : rocblas_operation_none,
                           n,
                           m,
                           k,
                           alpha_v,
                           to_pointer(inputs.at(1)),
                           arg_type,
                           ldb,
                           to_pointer(inputs.at(0)),
                           arg_type,
                           lda,
                           beta_v,
                           to_pointer(inputs[2]),
                           output_type,
                           ldc,
                           is_3inputs ? to_pointer(inputs[3]) : to_pointer(inputs[2]),
                           output_type,
                           ldd,
                           compute_type,
                           rocblas_gemm_algo_standard,
                           0,
                           flag);
        }
        else
        {
            auto a_stride = get_batch_stride(inputs[0]);
            auto b_stride = get_batch_stride(inputs[1]);
            auto c_stride = get_batch_stride(inputs[2]);
            auto d_stride = is_3inputs ? get_batch_stride(inputs[3]) : c_stride;
                        return pack (
// rocblas_invoke(&rocblas_gemm_strided_batched_ex,
                           ctx.get_stream().get_rocblas(),
                           transb ? rocblas_operation_transpose : rocblas_operation_none,
                           transa ? rocblas_operation_transpose : rocblas_operation_none,
                           n,
                           m,
                           k,
                           alpha_v,
                           to_pointer(inputs.at(1)),
                           arg_type,
                           ldb,
                           b_stride,
                           to_pointer(inputs.at(0)),
                           arg_type,
                           lda,
                           a_stride,
                           beta_v,
                           to_pointer(inputs[2]),
                           output_type,
                           ldc,
                           c_stride,
                           is_3inputs ? to_pointer(inputs[3]) : to_pointer(inputs[2]),
                           output_type,
                           ldd,
                           d_stride,
                           num_matrices,
                           compute_type,
                           rocblas_gemm_algo_standard,
                           0,
                           flag);
        }
    });
}

Shucai Xiao's avatar
Shucai Xiao committed
483
484
485
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx