onnx.cpp 14.3 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
9
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>

Paul's avatar
Paul committed
10
11
12
13
#include <migraph/fallthrough.hpp>
#include <migraph/program.hpp>
#include <migraph/operators.hpp>
#include <migraph/ranges.hpp>
Paul's avatar
Paul committed
14

Paul's avatar
Paul committed
15
namespace migraph {
Paul's avatar
Paul committed
16
17
18
19
20
21
22
23
24
25
26
27

struct unknown
{
    std::string op;
    std::string name() const { return "unknown:" + op; }
    shape compute_shape(std::vector<shape> input) const
    {
        if(input.empty())
            return {};
        else
            return input.front();
    }
Paul's avatar
Paul committed
28
29
30
31
    argument compute(context&, shape, std::vector<argument>) const
    {
        MIGRAPH_THROW("not computable");
    }
Paul's avatar
Paul committed
32
33
34
35
36
37
38
39
40
41
42
    friend std::ostream& operator<<(std::ostream& os, const unknown& x)
    {
        os << x.name();
        return os;
    }
};

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
43
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();

    std::unordered_map<std::string, op_func> ops;

    onnx_parser()
    {
        add_op("Conv", [this](attribute_map attributes, std::vector<instruction_ref> args) {
            convolution op;
            if(contains(attributes, "pads"))
            {
                copy(attributes["pads"].ints(), op.padding.begin());
            }
            if(contains(attributes, "strides"))
            {
                copy(attributes["strides"].ints(), op.stride.begin());
            }
            if(contains(attributes, "dilations"))
            {
                copy(attributes["dilations"].ints(), op.dilation.begin());
            }
            return prog.add_instruction(op, args);
        });
        add_op("MatMul", [this](attribute_map, std::vector<instruction_ref> args) {
            return prog.add_instruction(gemm{}, args);
        });
        add_op("MaxPool", [this](attribute_map attributes, std::vector<instruction_ref> args) {
            pooling op{"max"};
            // for(auto&& p:attributes) std::cout << p.first << std::endl;
            if(contains(attributes, "pads"))
            {
                copy(attributes["pads"].ints(), op.padding.begin());
            }
            if(contains(attributes, "strides"))
            {
                copy(attributes["strides"].ints(), op.stride.begin());
            }
            if(contains(attributes, "kernel_shape"))
            {
                copy(attributes["kernel_shape"].ints(), op.lengths.begin());
            }
            return prog.add_instruction(op, args);
        });
        add_op("Relu", [this](attribute_map, std::vector<instruction_ref> args) {
            return prog.add_instruction(activation{"relu"}, args);
        });
        add_op("Reshape", [this](attribute_map attributes, std::vector<instruction_ref> args) {
            reshape op;
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
            return prog.add_instruction(op, args);
        });
        add_op("Constant", [this](attribute_map attributes, std::vector<instruction_ref>) {
            literal v = parse_value(attributes.at("value"));
            return prog.add_literal(v);
        });
        add_op("Add", [this](attribute_map attributes, std::vector<instruction_ref> args) {
            if(contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
                    auto l = prog.add_instruction(broadcast{axis}, args);
                    return prog.add_instruction(add{}, args[0], l);
                }
            }
            return prog.add_instruction(add{}, args);
        });
116
117
118
119
120
121
122
123
124
125
126
127
128
        add_op("Sub", [this](attribute_map attributes, std::vector<instruction_ref> args) {
            if(contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
                    auto l = prog.add_instruction(broadcast{axis}, args);
                    return prog.add_instruction(sub{}, args[0], l);
                }
            }
Paul's avatar
Paul committed
129
130
            return prog.add_instruction(sub{}, args);
        });
131
132
133
134
135
136
137
138
139
140
141
142
143
        add_op("Mul", [this](attribute_map attributes, std::vector<instruction_ref> args) {
            if(contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
                    auto l = prog.add_instruction(broadcast{axis}, args);
                    return prog.add_instruction(mul{}, args[0], l);
                }
            }
Paul's avatar
Paul committed
144
145
            return prog.add_instruction(mul{}, args);
        });
146
147
148
149
150
151
152
153
154
155
156
157
158
        add_op("Div", [this](attribute_map attributes, std::vector<instruction_ref> args) {
            if(contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
                    auto l = prog.add_instruction(broadcast{axis}, args);
                    return prog.add_instruction(div{}, args[0], l);
                }
            }
Paul's avatar
Paul committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
            return prog.add_instruction(div{}, args);
        });
    }

    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            throw std::runtime_error("Failed reading");
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
            // TODO: Get shape of input parameter
Paul's avatar
Paul committed
192
            shape s            = parse_type(input.type());
Paul's avatar
Paul committed
193
194
195
196
197
198
199
200
201
202
            instructions[name] = prog.add_parameter(name, s);
        }
        for(auto&& p : nodes)
        {
            this->parse_node(p.second.name());
        }
    }

    void parse_node(std::string name)
    {
Paul's avatar
Paul committed
203
        if(name.empty())
Paul's avatar
Paul committed
204
            MIGRAPH_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
205
206
207
208
209
210
211
212
213
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
                    auto&& iname = nodes.at(input).name();
Paul's avatar
Paul committed
214
                    assert(name != iname);
Paul's avatar
Paul committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op_type()) == 0)
            {
                instructions[name] = prog.add_instruction(unknown{node.op_type()}, args);
            }
            else
            {
                instructions[name] = ops[node.op_type()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
        for(auto&& node : graph.node())
        {
            result[node.name()] = node;
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
275
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
276
277
278
279
280
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
281
        MIGRAPH_THROW("Invalid attribute type");
Paul's avatar
Paul committed
282
283
284
285
286
287
288
289
290
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
291
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
292
293
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
294
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
295
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
296
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
297
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
298
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
299
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
300
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
301
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
302
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
303
304
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
305
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
306
307
308
309
310
311
312
313
314
        case onnx::TensorProto::FLOAT16: throw std::runtime_error("");
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
315
        MIGRAPH_THROW("Invalid tensor type");
Paul's avatar
Paul committed
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
        case onnx::TensorProto::FLOAT16:
            break; // throw std::runtime_error("Unsupported type FLOAT16");
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
        // TODO: USe std::transform
        for(auto&& d : t.tensor_type().shape().dim())
        {
            dims.push_back(d.dim_value());
        }
        return {shape_type, dims};
    }
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
378
} // namespace migraph