"vscode:/vscode.git/clone" did not exist on "f0e3c584f415a39f77d35b098b7fb5fc14ccc5fc"
parse_resize.cpp 23 KB
Newer Older
1
2
3
/*
 * The MIT License (MIT)
 *
4
 * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
Paul Fultz II's avatar
Paul Fultz II committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/make_op.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {

const auto& get_nearest_op(const std::string& mode)
{
    using nearest_op = std::function<std::size_t(std::size_t, double)>;
    static std::unordered_map<std::string, nearest_op> const nearest_ops = {
        {"round_prefer_floor",
         [=](std::size_t d_in, double val) {
             val = std::max(0.0, std::min(d_in - 1.0, val));
             return static_cast<std::size_t>(std::ceil((val - 0.5)));
         }},
        {"round_prefer_ceil",
         [=](std::size_t d_in, double val) {
             val = std::max(0.0, std::min(d_in - 1.0, val));
             return static_cast<std::size_t>(std::round((val)));
         }},
        {"floor",
         [=](std::size_t d_in, double val) {
             val = std::max(0.0, std::min(d_in - 1.0, val));
             return static_cast<std::size_t>(std::floor((val)));
         }},
        {"ceil", [=](std::size_t d_in, double val) {
             val = std::max(0.0, std::min(d_in - 1.0, val));
             return static_cast<std::size_t>(std::ceil((val)));
         }}};

59
    if(not contains(nearest_ops, mode))
Paul Fultz II's avatar
Paul Fultz II committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    {
        MIGRAPHX_THROW("PARSE_RESIZE: nearest_mode " + mode + " not supported!");
    }

    return nearest_ops.at(mode);
}

const auto& get_original_idx_op(const std::string& mode)
{
    using original_idx_op = std::function<double(std::size_t, std::size_t, std::size_t, double)>;
    static std::unordered_map<std::string, original_idx_op> const idx_ops = {
        {"half_pixel",
         [=](std::size_t, std::size_t, std::size_t idx, double scale) {
             return (idx + 0.5) / scale - 0.5;
         }},
        {"pytorch_half_pixel",
         [=](std::size_t, std::size_t l_out, std::size_t idx, double scale) {
             return l_out > 1 ? (idx + 0.5) / scale - 0.5 : 0.0;
         }},
        {"align_corners",
         [=](std::size_t l_in, std::size_t l_out, std::size_t idx, double) {
81
             return (l_out == 1) ? 0.0 : (1.0 * idx * (l_in - 1.0) / (l_out - 1.0));
Paul Fultz II's avatar
Paul Fultz II committed
82
83
84
85
86
87
88
         }},
        {"asymmetric",
         [=](std::size_t, std::size_t, std::size_t idx, double scale) { return idx / scale; }},
        {"tf_half_pixel_for_nn", [=](std::size_t, std::size_t, std::size_t idx, double scale) {
             return (idx + 0.5) / scale;
         }}};

89
    if(not contains(idx_ops, mode))
Paul Fultz II's avatar
Paul Fultz II committed
90
91
92
93
94
95
96
    {
        MIGRAPHX_THROW("PARSE_RESIZE: coordinate_transformation_mode " + mode + " not supported!");
    }

    return idx_ops.at(mode);
}

97
98
99
static std::vector<int>
calc_neighbor_points(const std::vector<std::vector<std::vector<std::size_t>>>& vvv_ind,
                     int i_dim,
100
                     std::vector<std::vector<std::size_t>> vec_dims,
101
102
103
104
                     const shape& in_s)
{
    if(i_dim == vvv_ind.size())
    {
105
        std::vector<int> vec_ind(vec_dims.size());
106
107
108
109
110
111
        std::transform(vec_dims.begin(), vec_dims.end(), vec_ind.begin(), [&](auto idx) {
            return static_cast<int>(in_s.index(idx));
        });
        return vec_ind;
    }

112
    const auto& vv_lo = vvv_ind[i_dim][0];
113
114
115
116
117
118
119
120
121
122
123
124
125
    std::vector<std::vector<std::size_t>> vec_dims1;
    for(std::size_t start = 0; start < vec_dims.size(); start += vv_lo.size())
    {
        std::transform(vv_lo.begin(),
                       vv_lo.end(),
                       vec_dims.begin() + start,
                       std::back_inserter(vec_dims1),
                       [](auto i, auto dim) {
                           dim.push_back(i);
                           return dim;
                       });
    }

126
127
    const auto& vv_hi = vvv_ind[i_dim][1];
    for(std::size_t start = 0; start < vec_dims.size(); start += vv_hi.size())
128
129
130
131
132
133
134
135
136
137
    {
        std::transform(vv_hi.begin(),
                       vv_hi.end(),
                       vec_dims.begin() + start,
                       std::back_inserter(vec_dims1),
                       [](auto i, auto dim) {
                           dim.push_back(i);
                           return dim;
                       });
    }
138
139
    vec_dims.clear();
    return calc_neighbor_points(vvv_ind, i_dim + 1, std::move(vec_dims1), in_s);
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
}

static std::string get_coord_trans_mode(const onnx_parser::attribute_map& attr)
{
    std::string coord_trans_mode = "half_pixel";
    if(contains(attr, "coordinate_transformation_mode"))
    {
        coord_trans_mode = attr.at("coordinate_transformation_mode").s();
        // does not support transformation mode "tf_crop_and_resize"
        if(coord_trans_mode == "tf_crop_and_resize")
        {
            MIGRAPHX_THROW("PARSE_RESIZE: \"tf_crop_and_resize\" mode is not supported!");
        }
    }

    return coord_trans_mode;
}

static std::string get_mode(const onnx_parser::attribute_map& attr)
{
    std::string mode = "nearest";
    if(contains(attr, "mode"))
    {
        mode = attr.at("mode").s();
        if(mode != "nearest" and mode != "linear")
        {
            MIGRAPHX_THROW("PARSE_RESIZE: only nearest and linear modes are supported!");
        }
    }

    return mode;
}

static std::string get_nearest_mode(const onnx_parser::attribute_map& attr)
{
    std::string nearest_mode = "round_prefer_floor";
    if(contains(attr, "nearest_mode"))
    {
        nearest_mode = attr.at("nearest_mode").s();
    }

    return nearest_mode;
}

Paul Fultz II's avatar
Paul Fultz II committed
184
185
struct parse_resize : op_parser<parse_resize>
{
Shucai Xiao's avatar
Shucai Xiao committed
186
    std::vector<op_desc> operators() const { return {{"Resize"}, {"Upsample"}}; }
Paul Fultz II's avatar
Paul Fultz II committed
187

Shucai Xiao's avatar
Shucai Xiao committed
188
    instruction_ref parse(const op_desc& opd,
Paul Fultz II's avatar
Paul Fultz II committed
189
190
191
192
                          const onnx_parser& /*parser*/,
                          onnx_parser::node_info info,
                          std::vector<instruction_ref> args) const
    {
193
194
        // coord transform mode
        std::string coord_trans_mode = get_coord_trans_mode(info.attributes);
Paul Fultz II's avatar
Paul Fultz II committed
195

196
197
        // mode: only nearest and linear modes are supported for now
        std::string mode = get_mode(info.attributes);
Paul Fultz II's avatar
Paul Fultz II committed
198
199

        // nearest mode
200
        std::string nearest_mode = get_nearest_mode(info.attributes);
Paul Fultz II's avatar
Paul Fultz II committed
201
202

        // check exclude_outside, only support 0
203
204
        if(contains(info.attributes, "exclude_outside") and
           info.attributes.at("exclude_outside").i() == 1)
Paul Fultz II's avatar
Paul Fultz II committed
205
        {
Shucai Xiao's avatar
Shucai Xiao committed
206
            MIGRAPHX_THROW("PARSE_" + opd.op_name + ": exclude_outside 1 is not supported!");
Paul Fultz II's avatar
Paul Fultz II committed
207
208
        }

209
210
211
        // input data shape info.  Convert static lens to dynamic to simplify referencing them later
        auto in_s                                               = args[0]->get_shape().to_dynamic();
        std::vector<migraphx::shape::dynamic_dimension> in_dims = in_s.dyn_dims();
Paul Fultz II's avatar
Paul Fultz II committed
212
213

        // output shape is explicitly specified
214
        std::vector<size_t> out_lens(in_dims.size());
Paul Fultz II's avatar
Paul Fultz II committed
215
216
217
218

        // scale
        std::vector<double> vec_scale;

219
        // Infer either output size or scale, depending on input type
220
        for(const auto& arg : args)
Paul Fultz II's avatar
Paul Fultz II committed
221
        {
222
            if(arg->name() == "undefined" or arg == args.front())
Paul Fultz II's avatar
Paul Fultz II committed
223
            {
224
                continue;
Paul Fultz II's avatar
Paul Fultz II committed
225
226
            }

227
228
229
230
231
232
            // this is just developer code, figure out real requirement
            if(arg != args[0] and arg->get_shape().dynamic())
            {
                MIGRAPHX_THROW("parse_resize:  no other dynamic shapes allowed");
            }

233
234
235
236
237
238
            // skipped empty input
            auto lens = arg->get_shape().lens();
            if(lens.empty())
            {
                continue;
            }
Paul Fultz II's avatar
Paul Fultz II committed
239

240
241
242
            auto type = arg->get_shape().type();
            // output size
            if(type == shape::int64_type)
Paul Fultz II's avatar
Paul Fultz II committed
243
            {
244
                auto arg_out_s = arg->eval();
Shucai Xiao's avatar
Shucai Xiao committed
245
246
                check_arg_empty(arg_out_s,
                                "PARSE_" + opd.op_name + ": dynamic output size is not supported!");
247

248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
                // reallocate a vector and copy the values to it.  All dimensions except batch, even
                // if originally dynamic, are required to be fixed so we can refer to their max
                // value WLOG.
                arg_out_s.visit([&](auto ol) {
                    // todo:  assign doesn't work with dynamic shapes
                    auto ols = ol.get_shape().to_dynamic();
                    for(auto it = ols.dyn_dims().begin(); it != ols.dyn_dims().end(); it++)
                    {
                        out_lens.push_back(it->max);
                    }

                    // out_lens.assign(ol.begin(), ol.end());
                });

                if(out_lens.size() != in_dims.size())
263
                {
Shucai Xiao's avatar
Shucai Xiao committed
264
265
                    MIGRAPHX_THROW("PARSE_" + opd.op_name +
                                   ": specified output size does not match input size");
266
267
                }

268
269
270
271
272
                // compute the scale in each dimension
                vec_scale.resize(in_dims.size());

                std::transform(in_dims.begin(),
                               in_dims.end(),
273
274
                               out_lens.begin(),
                               vec_scale.begin(),
275
                               [](auto iss, auto oss) { return double(1.0 * oss / iss.max); });
Paul Fultz II's avatar
Paul Fultz II committed
276
            }
277
278
279
            else
            {
                // scale input
280
                if(lens[0] == in_dims.size())
281
282
283
                {
                    auto arg_scale = arg->eval();
                    check_arg_empty(arg_scale,
Shucai Xiao's avatar
Shucai Xiao committed
284
285
                                    "PARSE_" + opd.op_name +
                                        ": dynamic input scale is not supported!");
Paul Fultz II's avatar
Paul Fultz II committed
286

287
288
                    arg_scale.visit([&](auto v) { vec_scale.assign(v.begin(), v.end()); });
                    if(in_dims.size() != vec_scale.size())
289
                    {
Shucai Xiao's avatar
Shucai Xiao committed
290
291
                        MIGRAPHX_THROW("PARSE_" + opd.op_name +
                                       ": ranks of input and scale are different!");
292
293
                    }

294
295
                    std::transform(in_dims.begin(),
                                   in_dims.end(),
296
297
298
                                   vec_scale.begin(),
                                   out_lens.begin(),
                                   [&](auto idx, auto scale) {
299
300
                                       // inferred output size is floor(idx.max * scale)
                                       return idx.max * scale;
301
302
303
                                   });
                }
            }
Paul Fultz II's avatar
Paul Fultz II committed
304
305
        }

306
307
308
        // Dynamic batch:  Only args[0] can have a dynamic shape, only the 0'th
        // dimension--batch size--can be non-fixed, and the only resize mode allowed is "nearest"
        if(args[0]->get_shape().dynamic())
309
        {
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
            if(mode == "nearest")
            {
                auto some_dims = args[0]->get_shape().dyn_dims();

                bool mostly_fixed =
                    std::all_of(some_dims.begin() + 1,
                                some_dims.end(),
                                [](shape::dynamic_dimension dd) { return dd.is_fixed(); });

                if(not mostly_fixed)
                    MIGRAPHX_THROW(
                        "PARSE_" + opd.op_name +
                        ": dynamic shape inputs other than batch size are not supported");

                // TODO:  Add support for channel dimension

                // take max_lens() to get static dimension set
                // Drop the 0'th dimension,
                auto fixed_dims = args[0]->get_shape().max_lens();
                fixed_dims.erase(fixed_dims.begin());
                // dimensions of the (scaled) output, also with the 0'th dimension dropped
                auto fixed_out_lens = out_lens;
                fixed_out_lens.erase(fixed_out_lens.begin());

                // create a shape with the scaled lens and no batch dimension
                migraphx::shape static_out_shape(args[0]->get_shape().type(), fixed_out_lens);

                size_t out_elements = std::accumulate(fixed_out_lens.begin(),
                                                      fixed_out_lens.end(),
                                                      std::size_t{1},
                                                      std::multiplies<>());
                std::vector<int> ind(out_elements);

                //               map out_idx to in_idx
                auto idx_op     = get_original_idx_op(coord_trans_mode);
                auto nearest_op = get_nearest_op(nearest_mode);

                // For each element of static_out_shape, find the matching location of input shape.
                // The indexes we find will be an argument to the gather op.
                shape_for_each(static_out_shape, [&](const auto& out_idx_v, size_t out_idx) {
                    std::vector<size_t> in_idx(out_idx_v.size());
351
// printf(" index ");                    
352
353
354
355
356
357
358
                    for(auto ii = 0; ii < fixed_dims.size(); ++ii)
                    {
                        // Convert this index by scaling.  Inefficient since indexes are repeated
                        auto idx_val = idx_op(
                            fixed_dims[ii], fixed_out_lens[ii], out_idx_v[ii], vec_scale[ii]);
                        // round the scaled value to an index
                        in_idx[ii] = nearest_op(fixed_dims[ii], idx_val);
359
// printf(" %lu ", in_idx[ii]);                        
360
                    }
361
362
363
364
// printf("\n");
                    // convert a 3-D index to a single index  into a vector
                    // ind has a size equal to the output, each value is a 1D index into the 
                    // input data
365
                    ind[out_idx] = static_cast<int64_t>(static_out_shape.index(in_idx));
366
// printf("Maps to %d \n", ind[out_idx]);                    
367
368
369
370
                });

                // Create a static shape that's just like the scaled out_lens except we set to 1 the
                // 0'th dimension of output, later to be broadcasted to dynamic batch size
371
372
373
374
375
                // out_lens[0] = 1;
                // shape ind_s{shape::int32_type, out_lens};
                // auto ins_ind = info.add_literal(literal(ind_s, ind));


376
377

                // define a dynamic shape including the batch dimension
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
                // Not using this now; the next block seems to work with gather
                // std::vector<shape::dynamic_dimension> out_dyn_dims(in_dims.size());
                // out_dyn_dims[0] = in_dims[0];
                // std::transform(fixed_out_lens.begin(),
                //                fixed_out_lens.end(),
                //                out_dyn_dims.begin() + 1,
                //                [&](auto len) {
                //                    return shape::dynamic_dimension{len, len};
                //                });
                // shape dyn_out_shape{in_s.type(), out_dyn_dims};

                instruction_ref gather_ins{args[0]};
                // for each static dimension
                for(auto ii = 0; ii < fixed_dims.size(); ++ii)
                {
                    std::vector<size_t> in_idx(fixed_out_lens[ii]);
                   // for range of this dimension's size in output
                   for(auto len : range(fixed_out_lens[ii]))
                   {
                        // Convert this index by scaling.
                        auto idx_val = idx_op(fixed_dims[ii], fixed_out_lens[ii], len, vec_scale[ii+1]);
 
 printf(" ii %d  out_lens %lu len  %lu  vec_scale[ii+1] %f   --->    idx_val %f\n", ii, fixed_out_lens[ii],
 len, vec_scale[ii+1], idx_val);
                        // round the scaled value to an index
                        in_idx[len] = nearest_op(fixed_dims[ii], idx_val);             
printf(" in_idx %lu\n", in_idx[len]);
                        // Put the value into index vector
                    }
                    // Create a 1D shape literal
                    auto index_litA = info.add_literal(literal(migraphx::shape(migraphx::shape::int64_type,
                        {fixed_out_lens[ii]}), in_idx));

                    // add a "gather" instruction 
                    gather_ins = info.add_instruction(make_op("gather", {{"axis", 1 + ii}}), gather_ins, index_litA);
                    
printf("***\n");                    
                    if( ii == (fixed_dims.size() - 1))
                        return gather_ins;
                }
                // If we get here, no gather instructions were added.
                MIGRAPHX_THROW("PARSE_RESIZE: inputs didn't have enough dimensions");


                // define an index dynamic shape without the batch dimension
                // shape index_shape{in_s.type(), fixed_out_lens};
                // this has the same data as ins_ind, but 1 less dimension ;lacks the leading dimension of 1
                // auto index_lit = info.add_literal(literal(index_shape, ind));

printf("fixed_out_lens: ");
for(size_t aa : fixed_out_lens) printf (" %lu ", aa);printf("\n");

                // Axis 0 or 1?  look into shape in gather's compute_shape' and results
                // return info.add_instruction(make_op("gather", {{"axis", 0}}), args[0], index_lit);
432
433
434
435
436
            }
            else
            {
                MIGRAPHX_THROW("PARSE_RESIZE: only nearest_mode supports dynamic batch size input");
            }
437
438
439
        }
        else
        {
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
            //
            //        Static input shape.
            //
            in_s         = args[0]->get_shape();
            auto in_lens = args[0]->get_shape().lens();

            shape out_s{in_s.type(), out_lens};
            std::size_t out_elements = out_s.elements();
            auto idx_op              = get_original_idx_op(coord_trans_mode);

            // reshape input to one-dimension
            // TODO:  We did this in multi dimensions in the dynamic case.  Can we do
            //          the same here?
            std::vector<int64_t> rsp_lens = {static_cast<int64_t>(in_s.elements())};
            args[0]                       = info.make_contiguous(args[0]);
            auto rsp = info.add_instruction(make_op("reshape", {{"dims", rsp_lens}}), args[0]);

            if(mode == "nearest")
            {
                std::vector<int> ind(out_elements);

                // map out_idx to in_idx
                auto nearest_op = get_nearest_op(nearest_mode);
                shape_for_each(out_s, [&](const auto& out_idx_v, size_t out_idx) {
                    std::vector<size_t> in_idx(out_idx_v.size());
                    for(auto ii = 0; ii < in_lens.size(); ++ii)
                    {
                        auto idx_val =
                            idx_op(in_lens[ii], out_lens[ii], out_idx_v[ii], vec_scale[ii]);
                        in_idx[ii] = nearest_op(in_lens[ii], idx_val);
                    }
Paul Fultz II's avatar
Paul Fultz II committed
471

472
473
                    ind[out_idx] = static_cast<int64_t>(in_s.index(in_idx));
                });
474

475
476
477
478
479
480
                shape ind_s{shape::int32_type, out_lens};
                auto ins_ind = info.add_literal(literal(ind_s, ind));
                return info.add_instruction(make_op("gather", {{"axis", 0}}), rsp, ins_ind);
            }
            // linear mode
            else
Paul Fultz II's avatar
Paul Fultz II committed
481
            {
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
                auto nearest_floor = get_nearest_op("floor");
                auto nearest_ceil  = get_nearest_op("ceil");

                // get the number of dimensions
                std::size_t n_dim = out_lens.size();
                auto vvv_ind =
                    std::vector(n_dim, std::vector(2, std::vector<size_t>(out_elements)));
                std::vector<std::vector<float>> delta(n_dim, std::vector<float>(out_elements));

                shape_for_each(out_s, [&](const auto& out_idx_v, size_t out_idx) {
                    for(auto ii = 0; ii < in_lens.size(); ++ii)
                    {
                        auto idx_val =
                            idx_op(in_lens[ii], out_lens[ii], out_idx_v[ii], vec_scale[ii]);
                        vvv_ind[ii][0][out_idx] = nearest_floor(in_lens[ii], idx_val);
                        vvv_ind[ii][1][out_idx] = nearest_ceil(in_lens[ii], idx_val);
                        delta[ii][out_idx]      = idx_val - vvv_ind[ii][0][out_idx];
                    }
                });

                auto ind = calc_neighbor_points(
                    vvv_ind, 0, std::vector<std::vector<std::size_t>>(out_elements), in_s);
                auto ind_lens = out_lens;
                ind_lens[0] *= (std::size_t{1} << n_dim);
                shape ind_s{shape::int32_type, ind_lens};
                auto ins_ind = info.add_literal(literal(ind_s, ind));
                auto data    = info.add_instruction(make_op("gather", {{"axis", 0}}), rsp, ins_ind);

                auto dim_lens = out_lens;
                dim_lens[0] *= (std::size_t{1} << (n_dim - 1));
                for(std::size_t i = 0; i < n_dim; ++i)
513
                {
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
                    shape dim_s{shape::float_type, dim_lens};
                    const auto& dim_delta = delta[n_dim - i - 1];
                    std::vector<float> delta_data;
                    for(std::size_t j = 0; j < dim_lens[0] / out_lens[0]; ++j)
                    {
                        delta_data.insert(delta_data.begin(), dim_delta.begin(), dim_delta.end());
                    }
                    auto ins_delta = info.add_literal(dim_s, delta_data);

                    // slice the data
                    int64_t slc_stride = dim_lens[0];
                    auto low           = info.add_instruction(
                        make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", {slc_stride}}}),
                        data);
                    auto hi = info.add_instruction(
                        make_op(
                            "slice",
531
                            {{"axes", {0}}, {"starts", {slc_stride}}, {"ends", {2 * slc_stride}}}),
532
533
534
535
536
537
                        data);
                    auto diff = info.add_instruction(make_op("sub"), hi, low);
                    auto ddf  = info.add_instruction(make_op("mul"), diff, ins_delta);
                    data      = info.add_instruction(make_op("add"), ddf, low);
                    dim_lens[0] /= 2;
                }
Paul Fultz II's avatar
Paul Fultz II committed
538

539
540
                return data;
            }
541
        }
Paul Fultz II's avatar
Paul Fultz II committed
542
543
544
545
    }
};

} // namespace onnx
546

Paul Fultz II's avatar
Paul Fultz II committed
547
548
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx