"configs/offload/block/wan_i2v_block.json" did not exist on "420fec7fbad225400762a66ba61fe98faffceae6"
resnet50.py 3.99 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#####################################################################################
# The MIT License (MIT)
#
# Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#####################################################################################
24
25
26
# Inference with ONNX Runtime
import onnxruntime
import time
27
from torchvision import models, transforms as T
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import torch
from PIL import Image
import numpy as np

resnet50 = models.resnet50(pretrained=True)

# Download ImageNet labels
#!curl -o imagenet_classes.txt https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt

# Read the categories
with open("imagenet_classes.txt", "r") as f:
    categories = [s.strip() for s in f.readlines()]

# Export the model to ONNX
image_height = 224
image_width = 224
x = torch.randn(1, 3, image_height, image_width, requires_grad=True)
torch_out = resnet50(x)
torch.onnx.export(
    resnet50,  # model being run
    x,  # model input (or a tuple for multiple inputs)
    "resnet50.onnx",  # where to save the model (can be a file or file-like object)
    export_params=
    True,  # store the trained parameter weights inside the model file
    opset_version=12,  # the ONNX version to export the model to
    do_constant_folding=
    True,  # whether to execute constant folding for optimization
    input_names=['input'],  # the model's input names
    output_names=['output'])  # the model's output names

# Pre-processing for ResNet-50 Inferencing, from https://pytorch.org/hub/pytorch_vision_resnet/
resnet50.eval()
60
filename = 'bird.jpg'  # change to your filename
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

input_image = Image.open(filename)
preprocess = T.Compose([
    T.Resize(256),
    T.CenterCrop(224),
    T.ToTensor(),
    T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(
    0)  # create a mini-batch as expected by the model

# move the input and model to GPU for speed if available
print("GPU Availability: ", torch.cuda.is_available())
if torch.cuda.is_available():
    input_batch = input_batch.to('cuda')
    resnet50.to('cuda')

session_fp32 = onnxruntime.InferenceSession(
    "resnet50.onnx", providers=['MIGraphXExecutionProvider'])


def softmax(x):
    """Compute softmax values for each sets of scores in x."""
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()


latency = []


def run_sample(session, image_file, categories, inputs):
    start = time.time()
    input_arr = inputs.cpu().detach().numpy()
    ort_outputs = session.run([], {'input': input_arr})[0]
    latency.append(time.time() - start)
    output = ort_outputs.flatten()
    output = softmax(output)  # this is optional
    top5_catid = np.argsort(-output)[:5]
    for catid in top5_catid:
        print(categories[catid], output[catid])
    return ort_outputs


105
ort_output = run_sample(session_fp32, 'bird.jpg', categories, input_batch)
106
107
print("resnet50, time = {} ms".format(
    format(sum(latency) * 1000 / len(latency), '.2f')))