normalize_attributes.cpp 7.64 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
Shucai Xiao's avatar
Shucai Xiao committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include <migraphx/operation.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/normalize_attributes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/op/normalize_attribute.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

// different attributes
// 1) use_input(default)/use_output
// 2) use_rank(default)/use_len
// 3) clip_min(default)/not_clip_min
//   3.1) include_min(default)/exclude_min
// 4) clip_max(default)/not_clip_max
//   4.1) exclude_max(default)/include_max
auto tune_attribute(const std::vector<int64_t>& vec,
                    const std::vector<int64_t>& axes,
                    const value& val,
                    const std::vector<std::size_t>& lens)
{
    std::vector<int64_t> result(vec);
Paul Fultz II's avatar
Paul Fultz II committed
46
    int64_t n_rank                                 = lens.size();
Shucai Xiao's avatar
Shucai Xiao committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    std::vector<op::normalize_attribute> vec_attrs = val.to_vector<op::normalize_attribute>();
    if(contains(vec_attrs, op::normalize_attribute::use_output))
    {
        n_rank = n_rank + vec.size();
    }

    std::vector<int64_t> max_vals(vec.size(), n_rank);
    if(contains(vec_attrs, op::normalize_attribute::use_len))
    {
        std::transform(axes.begin(), axes.end(), max_vals.begin(), [&](auto i) { return lens[i]; });
    }

    if(contains(vec_attrs, op::normalize_attribute::clip_max))
    {
        if(contains(vec_attrs, op::normalize_attribute::include_max))
        {
            std::transform(result.begin(),
                           result.end(),
                           max_vals.begin(),
                           result.begin(),
                           [](auto v, auto mv) { return v > mv ? mv : v; });
        }
        else
        {
            std::transform(result.begin(),
                           result.end(),
                           max_vals.begin(),
                           result.begin(),
                           [](auto v, auto mv) { return v >= mv ? mv - 1 : v; });
        }
    }
    else
    {
        if(contains(vec_attrs, op::normalize_attribute::include_max))
        {
            if(!std::equal(result.begin(), result.end(), max_vals.begin(), std::less_equal<>{}))
            {
                MIGRAPHX_THROW("TUNE_VECTOR: value out of range!");
            }
        }
        else
        {
            if(!std::equal(result.begin(), result.end(), max_vals.begin(), std::less<>{}))
            {
                MIGRAPHX_THROW("TUNE_VECTOR: value out of range!");
            }
        }
    }

    std::vector<int64_t> min_vals = max_vals;
    std::transform(min_vals.begin(), min_vals.end(), min_vals.begin(), [](auto v) { return -v; });
    if(contains(vec_attrs, op::normalize_attribute::clip_min))
    {
        if(contains(vec_attrs, op::normalize_attribute::include_min))
        {
            std::transform(result.begin(),
                           result.end(),
                           min_vals.begin(),
                           result.begin(),
                           [](auto v, auto mv) { return v < mv ? mv : v; });
        }
        else
        {
            std::transform(result.begin(),
                           result.end(),
                           min_vals.begin(),
                           result.begin(),
                           [](auto v, auto mv) { return v < mv + 1 ? mv + 1 : v; });
        }
    }
    else
    {
        if(contains(vec_attrs, op::normalize_attribute::include_min))
        {
            if(!std::equal(min_vals.begin(), min_vals.end(), result.begin(), std::less_equal<>{}))
            {
                MIGRAPHX_THROW("TUNE_VECTOR: attribute out of range!");
            }
        }
        else
        {
            if(!std::equal(result.begin(), result.end(), min_vals.begin(), std::less<>{}))
            {
                MIGRAPHX_THROW("TUNE_VECTOR: attribute out of range!");
            }
        }
    }

    std::transform(
        result.begin(), result.end(), max_vals.begin(), result.begin(), [](auto v, auto mv) {
            return v < 0 ? v + mv : v;
        });

    return result;
}

kahmed10's avatar
kahmed10 committed
143
144
145
146
147
148
149
150
151
152
auto tune_pad_attribute(const value& val)
{

    std::vector<size_t> vec_attrs = val.to_vector<size_t>();
    std::vector<size_t> result(vec_attrs.begin(), vec_attrs.end());
    std::copy(vec_attrs.begin(), vec_attrs.end(), std::back_inserter(result));

    return result;
}

charlie's avatar
charlie committed
153
bool normalize_attributes(operation& op, const shape& s)
Shucai Xiao's avatar
Shucai Xiao committed
154
155
156
157
{
    bool tuned = false;
    auto attrs = op.attributes();
    auto val   = op.to_value();
kahmed10's avatar
kahmed10 committed
158
159
    if(attrs.contains("normalize_padding"))
    {
charlie's avatar
charlie committed
160
        auto num_dims     = s.max_lens().size();
kahmed10's avatar
kahmed10 committed
161
162
163
164
165
        auto padding      = val.at(attrs.at("normalize_padding").to<std::string>());
        auto padding_size = padding.size();
        // for now, assume the dimensions to pad start at dim 2
        auto padding_start = 2;

charlie's avatar
charlie committed
166
        if(padding_size == 2 * (num_dims - padding_start))
kahmed10's avatar
kahmed10 committed
167
            tuned = true;
charlie's avatar
charlie committed
168
        else if(padding_size != (num_dims - padding_start))
kahmed10's avatar
kahmed10 committed
169
170
171
172
173
174
175
176
177
            MIGRAPHX_THROW("inconsistent padding size");
        else
        {
            auto result    = tune_pad_attribute(padding);
            val["padding"] = result;
            op.from_value(val);
            tuned = true;
        }
    }
Shucai Xiao's avatar
Shucai Xiao committed
178
179
    if(!attrs.contains("normalize_axes"))
    {
kahmed10's avatar
kahmed10 committed
180
        return tuned;
Shucai Xiao's avatar
Shucai Xiao committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    }

    auto attr_v = attrs.at("normalize_axes").without_key();
    for(const auto& rv : attr_v)
    {
        const auto& key = rv.get_key();
        if(val.contains(key))
        {
            auto vv = val.at(key).without_key();
            if(vv.is_array())
            {
                std::vector<int64_t> axes;
                if(val.contains("axes"))
                {
                    axes = val.at("axes").without_key().to_vector<int64_t>();
                }
                auto vec    = vv.to_vector<int64_t>();
charlie's avatar
charlie committed
198
                auto result = tune_attribute(vec, axes, rv.without_key(), s.lens());
Shucai Xiao's avatar
Shucai Xiao committed
199
200
201
202
203
204
205
206
                val[key]    = result;
                op.from_value(val);
                val   = op.to_value();
                tuned = true;
            }
            else
            {
                auto num    = vv.to<int64_t>();
charlie's avatar
charlie committed
207
                auto result = tune_attribute({num}, {num}, rv.without_key(), s.lens());
Shucai Xiao's avatar
Shucai Xiao committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
                val[key]    = result.front();
                op.from_value(val);
                val   = op.to_value();
                tuned = true;
            }
        }
        else
        {
            MIGRAPHX_THROW("NORMALIZE_ATTR : op " + op.name() + " attribute \"" + key +
                           "\" not exist!");
        }
    }

    return tuned;
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx