"git@developer.sourcefind.cn:gaoqiong/migraphx.git" did not exist on "4a4f537e6e10ac4ab1906d63fe1a193021aea855"
partitioner.cpp 10.4 KB
Newer Older
umangyadav's avatar
umangyadav committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
umangyadav's avatar
umangyadav committed
24
#include "migraphx/target_assignments.hpp"
25
26
#include <cstddef>
#include <limits>
umangyadav's avatar
umangyadav committed
27
#include <iterator>
umangyadav's avatar
umangyadav committed
28
#include <unordered_map>
umangyadav's avatar
umangyadav committed
29
30
31
#include <unordered_set>

#include <migraphx/env.hpp>
32
33
#include <migraphx/algorithm.hpp>
#include <migraphx/stringutils.hpp>
umangyadav's avatar
umangyadav committed
34
#include <migraphx/partitioner.hpp>
35
36
37
38
39
40
41
#include <migraphx/pass_manager.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/program.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/ranges.hpp>
umangyadav's avatar
umangyadav committed
42

43
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DEBUG_PARTITIONER)
umangyadav's avatar
umangyadav committed
44
45
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

static literal get_scalar(instruction_ref ins)
{
    if(ins->name() == "contiguous")
        return get_scalar(ins->inputs().front());
    const auto& s = ins->get_shape();
    if(s.elements() != 1 && not(s.scalar()))
        return {};
    if(not ins->can_eval())
        return {};
    auto e = ins->eval();
    literal r{};
    // needed for bool as visit_at invokes as() which promotes bool to int8
    // Without this we'll break type checks for logical ops that are fused.
    if(e.get_shape().type() == shape::bool_type)
    {
        r = literal{e.at<bool>()};
    }
    else
    {
        e.visit_at([&](auto x) { r = literal{x}; });
    }
    return r;
}
umangyadav's avatar
umangyadav committed
70
71
72
73
void partition(migraphx::module_ref mm,
               migraphx::program& p,
               const target_assignments& tass,
               std::unordered_map<std::size_t, std::size_t>& tid_counter)
74
75
76
77
{
    mm->sort();
    if(enabled(MIGRAPHX_DEBUG_PARTITIONER{}))
    {
umangyadav's avatar
umangyadav committed
78
79
        std::cout << "sorted module: \n";
        mm->debug_print();
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
    }
    std::vector<instruction_ref> same_tid_ins_vec;
    std::unordered_set<instruction_ref> same_tid_ins_set;
    // walk the graph in reverse-DFS order
    size_t current_tid = std::numeric_limits<std::size_t>::max();
    std::unordered_set<instruction_ref> skip_ins;
    for(auto ins : iterator_for(*mm))
    {
        // gather instructions belonging to the same target_id
        // for now, make sure that all the inputs to the insturctions are also from the same
        // target_id, if not create another module
        // skip all the builtins
        if(enabled(MIGRAPHX_DEBUG_PARTITIONER{}))
        {
            std::cout << "currently processing: \n";
            ins->debug_print();
            std::cout << "\n";
        }
umangyadav's avatar
umangyadav committed
98
99
100
101
102
103
104
105
106
107
108
109
110
        if(skip_ins.count(ins) == 0)
        {
            if(not ins->module_inputs().empty())
            {
                for(auto sub_mod : ins->module_inputs())
                {
                    partition(sub_mod, p, tass, tid_counter);
                }
                mm->replace_instruction(
                    ins, ins->get_operator(), ins->inputs(), ins->module_inputs());
            }
        }

111
112
113
114
115
116
        if((starts_with(ins->name(), "@") and ins->name() != "@return") or skip_ins.count(ins) != 0)
        {
            continue;
        }
        else if(ins->name() != "@return" and current_tid == std::numeric_limits<std::size_t>::max())
        {
umangyadav's avatar
umangyadav committed
117
118
119
120
            if(tass.find(ins) == tass.end())
            {
                continue;
            }
121
122
123
124
125
126
127
128
129
130
            current_tid              = tass.at(ins);
            tid_counter[current_tid] = 0;
            same_tid_ins_vec.push_back(ins);
            same_tid_ins_set.insert(ins);
        }
        else if(ins->name() != "@return" and tass.at(ins) == current_tid)
        {
            same_tid_ins_vec.push_back(ins);
            same_tid_ins_set.insert(ins);
        }
umangyadav's avatar
umangyadav committed
131
        else if(ins->name() == "@return" or tass.at(ins) != current_tid)
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
        {
            // gather all parameters
            std::unordered_set<instruction_ref> params;
            // gather all return values
            std::unordered_set<instruction_ref> return_ins;
            for(auto tins : iterator_for(same_tid_ins_vec))
            {
                auto inputs  = (*tins)->inputs();
                auto outputs = (*tins)->outputs();
                transform_if(
                    inputs.cbegin(),
                    inputs.cend(),
                    std::inserter(params, params.end()),
                    [&](auto in_param) {
                        return (params.count(in_param) == 0 and
                                same_tid_ins_set.count(in_param) == 0);
                    },
                    [&](auto in_param) { return in_param; });
                if(std::any_of(outputs.begin(), outputs.end(), [&](const auto out_ins) {
                       return same_tid_ins_set.count(out_ins) == 0;
                   }))
                {
                    return_ins.insert(*tins);
                }
            }
            if(enabled(MIGRAPHX_DEBUG_PARTITIONER{}))
            {
                std::cout << "params ins: \n";
                for(auto tmp : iterator_for(params))
                {
                    (*tmp)->debug_print();
                }
                std::cout << "\n";
                std::cout << "return ins: \n";
                for(auto tmp : iterator_for(return_ins))
                {
                    (*tmp)->debug_print();
                }
                std::cout << "\n";
            }

umangyadav's avatar
umangyadav committed
173
174
            auto* tmod = p.create_module("target_mod_" + std::to_string(current_tid) + "_" +
                                         std::to_string(tid_counter[current_tid]));
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
            std::unordered_map<instruction_ref, instruction_ref> params_map;
            std::size_t param_counter = 0;
            std::vector<instruction_ref> rot_ins_params;
            for(auto pins : iterator_for(params))
            {
                auto scalar = get_scalar(*pins);
                if(scalar.empty())
                {
                    params_map[*pins] = tmod->add_parameter(
                        "param:" + std::to_string(param_counter++), (*pins)->get_shape());
                    rot_ins_params.push_back(*pins);
                }
                else
                {
                    params_map[*pins] = tmod->add_literal(scalar);
                }
            }
            // TODO: what if params_map is empty ?
            for(auto tins : iterator_for(same_tid_ins_vec))
            {
                auto inputs = (*tins)->inputs();
                std::vector<instruction_ref> new_inputs;
                std::transform(inputs.begin(),
                               inputs.end(),
                               std::back_inserter(new_inputs),
                               [&](auto input_ins) { return params_map.at(input_ins); });
                // [TODO]: what if it is has module args ?
umangyadav's avatar
umangyadav committed
202
203
                auto tmod_tins = tmod->add_instruction(
                    (*tins)->get_operator(), new_inputs, (*tins)->module_inputs());
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
                // add parameter to params map so that it can be looked up by other insturctions
                params_map[*tins] = tmod_tins;
            }
            std::vector<instruction_ref> rins;
            std::unordered_map<instruction_ref, std::size_t> return_ins_idx_map;
            for(auto ritr : iterator_for(return_ins))
            {
                rins.push_back(params_map.at(*ritr));
                return_ins_idx_map[*ritr] = std::distance(ritr, return_ins.begin());
            }
            tmod->add_return(rins);
            if(enabled(MIGRAPHX_DEBUG_PARTITIONER{}))
            {
                std::cout << "tmod: \n";
                tmod->debug_print();
            }
            // add run_on_target ins
            auto rot_ins =
                mm->insert_instruction(ins,
                                       make_op("run_on_target", {{"target_id", current_tid}}),
                                       rot_ins_params,
                                       {tmod});
            skip_ins.insert(rot_ins);
            // fetch return instructions from tuple
            for(auto mm_rins : iterator_for(return_ins))
            {
                auto tuple_elem_ins = mm->insert_instruction(
                    ins,
                    make_op("get_tuple_elem", {{"index", return_ins_idx_map.at(*mm_rins)}}),
                    rot_ins);
                skip_ins.insert(tuple_elem_ins);
                // replace returns from tmod in main module
                mm->replace_instruction(*mm_rins, tuple_elem_ins);
            }
            dead_code_elimination{}.apply(*mm);
            // update current_tid
            if(ins->name() != "@return")
            {
                current_tid = tass.at(ins);
                if(tid_counter.count(current_tid) == 0)
                {
                    tid_counter[current_tid] = 0;
                }
                tid_counter[current_tid]++;
                same_tid_ins_set.clear();
                same_tid_ins_vec.clear();
                same_tid_ins_set.insert(ins);
                same_tid_ins_vec.push_back(ins);
            }
            if(enabled(MIGRAPHX_DEBUG_PARTITIONER{}))
            {
umangyadav's avatar
umangyadav committed
255
256
                std::cout << "module after creation of tmod and rot: \n";
                mm->debug_print();
257
258
259
            }
        }
    }
umangyadav's avatar
umangyadav committed
260
261
262
263
264
265
266
267
}

void partition(migraphx::program& p, const target_assignments& tass)
{
    auto* mm = p.get_main_module();
    // sort the graph in reverse post order DFS order
    std::unordered_map<std::size_t, std::size_t> tid_counter;
    partition(mm, p, tass, tid_counter);
268
269
270
    dead_code_elimination{}.apply(p);
}

umangyadav's avatar
umangyadav committed
271
272
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx