reduce.cpp 7.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
24
25
26
27
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/gpu/compile_hip.hpp>
Paul Fultz II's avatar
Paul Fultz II committed
28
#include <migraphx/gpu/compile_gen.hpp>
29
30
31
32
33
34
#include <migraphx/reduce_dims.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {

Paul Fultz II's avatar
Paul Fultz II committed
35
36
using namespace migraphx::gpu::gen; // NOLINT

37
38
39
static const char* const simple_reduce_kernel = R"__migraphx__(
#include <migraphx/kernels/index.hpp>
#include <migraphx/kernels/reduce.hpp>
Paul Fultz II's avatar
Paul Fultz II committed
40
#include <migraphx/kernels/vectorize.hpp>
41
42
43
44
45
46
47
#include <args.hpp>

namespace migraphx {

${preamble}

extern "C" {
Paul Fultz II's avatar
Paul Fultz II committed
48
__global__ void reduce_kernel(void* input_p, void* output_p) 
49
{
Paul Fultz II's avatar
Paul Fultz II committed
50
51
    
    transform_args(make_tensors(), ${transformers})(input_p, output_p)([](auto input, auto output) {
52

Paul Fultz II's avatar
Paul Fultz II committed
53
        simple_reduce<reduce::${algo}>(${reduction}, ${init}, input, output, ${read}, ${write});
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
    });
}
    
}

} // namespace migraphx

)__migraphx__";

static std::size_t get_reduce_elements(const std::vector<shape>& inputs)
{
    return inputs.front().elements() / inputs.back().elements();
}
static std::size_t get_reduce_elements(const std::vector<instruction_ref>& inputs)
{
    return get_reduce_elements(to_shapes(inputs));
}

Paul Fultz II's avatar
Paul Fultz II committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
static std::vector<std::size_t> get_reduce_lens(const std::vector<std::size_t>& input_lens,
                                                const std::vector<std::size_t>& output_lens)
{
    std::vector<std::size_t> reduce_lens;
    std::transform(output_lens.begin(),
                   output_lens.end(),
                   input_lens.begin(),
                   std::back_inserter(reduce_lens),
                   [](auto x, auto y) -> std::size_t {
                       if(x == y)
                           return 1;
                       else
                           return y;
                   });
    return reduce_lens;
}

static std::string get_reduce_algo(const std::vector<shape>& inputs)
{
    auto rlens      = get_reduce_lens(inputs.front().lens(), inputs.back().lens());
    const auto init = std::numeric_limits<std::size_t>::max();
    // The minimum stride
    auto min_stride = std::inner_product(
        rlens.begin(),
        rlens.end(),
        inputs.front().strides().begin(),
        init,
        [](auto x, auto y) { return std::min(x, y); },
        [](auto len, auto stride) { return len == 1 ? init : stride; });
    if(min_stride > 2)
        return "lane";
    return "block";
}

106
107
108
109
110
111
112
113
114
115
struct reduce_compiler : compiler<reduce_compiler>
{
    std::vector<std::string> names() const
    {
        return {"reduce", "reduce_sum", "reduce_mean", "reduce_max", "reduce_min", "reduce_prod"};
    }

    operation compile_op(context& ctx, const std::vector<shape>& inputs, const value& v) const
    {
        hip_compile_options options;
Paul Fultz II's avatar
Paul Fultz II committed
116
117
118
119
120
121
122
123
        options.inputs         = inputs;
        options.output         = inputs.back();
        options.virtual_inputs = reduce_dims(inputs);
        auto faxis             = find_fast_axis({options.virtual_inputs.front()});
        vectorize vec{};
        // Vectorize if the axis is a reduction axis
        if(options.virtual_inputs.back().lens()[faxis] == 1)
        {
124
            vec = vectorize::elements(ctx, faxis, options.virtual_inputs);
Paul Fultz II's avatar
Paul Fultz II committed
125
126
127
128
        }
        auto relements = get_reduce_elements(options.virtual_inputs) / vec.size;
        auto nelements = options.virtual_inputs.back().elements();
        auto algo      = v.get("algo", get_reduce_algo(options.virtual_inputs));
Paul Fultz II's avatar
Paul Fultz II committed
129
130
        if(algo == "block")
        {
Paul Fultz II's avatar
Paul Fultz II committed
131
            auto block_size = compute_block_size(relements, 256);
Paul Fultz II's avatar
Paul Fultz II committed
132
            options.set_launch_params(
Paul Fultz II's avatar
Paul Fultz II committed
133
                v, compute_global_for(ctx, nelements * block_size, 256), block_size);
Paul Fultz II's avatar
Paul Fultz II committed
134
135
136
        }
        else if(algo == "lane")
        {
Paul Fultz II's avatar
Paul Fultz II committed
137
            options.set_launch_params(v, compute_global_for(ctx, nelements, 256));
Paul Fultz II's avatar
Paul Fultz II committed
138
139
140
141
142
        }
        else
        {
            MIGRAPHX_THROW("Unknown reduce algo: " + algo);
        }
Paul Fultz II's avatar
Paul Fultz II committed
143
144
145
        options.kernel_name  = "reduce_kernel";
        std::string identity = "[](auto x) { return x; }";
        auto src             = interpolate_string(simple_reduce_kernel,
146
147
148
149
                                      {{"reduction", v.at("reduction").to<std::string>()},
                                       {"init", v.get("init", std::string{"0"})},
                                       {"read", v.get("read", identity)},
                                       {"write", v.get("write", identity)},
Paul Fultz II's avatar
Paul Fultz II committed
150
                                       {"algo", algo},
Paul Fultz II's avatar
Paul Fultz II committed
151
                                       {"transformers", make_transformer_args(vec)},
152
                                       {"preamble", v.get("preamble", std::string{})}});
Paul Fultz II's avatar
Paul Fultz II committed
153
        options.params += "-Wno-float-equal";
154
155
156
157
158
        return compile_hip_code_object(src, options);
    }

    compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
    {
159
        value v = value::object{};
160
161
162
163
164
165
        if(op.name() == "reduce_sum")
        {
            v["reduction"] = "op::sum{}";
        }
        else if(op.name() == "reduce_mean")
        {
166
167
168
169
170
171
172
173
174
175
176
177
            auto reduce_elements = get_reduce_elements(ins->inputs());
            auto reduce_type     = ins->inputs().front()->get_shape().type();
            v["reduction"]       = "op::sum{}";
            std::string mean     = "op::mean{" + std::to_string(reduce_elements) + "}";
            // Use float accumulator when reduction size is too large for half
            if(reduce_type == shape::half_type and reduce_elements > 16384)
                v["read"] = "compose(" + mean + ", op::convert_to<float>{})";
            else if(contains({shape::float_type, shape::half_type, shape::double_type},
                             reduce_type))
                v["read"] = mean;
            else
                v["write"] = mean;
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
        }
        else if(op.name() == "reduce_max")
        {
            v["reduction"] = "op::max{}";
            v["init"]      = "lowest{}";
        }
        else if(op.name() == "reduce_min")
        {
            v["reduction"] = "op::min{}";
            v["init"]      = "highest{}";
        }
        else if(op.name() == "reduce_prod")
        {
            v["reduction"] = "op::product{}";
            v["init"]      = "1";
        }
        else
        {
            MIGRAPHX_THROW("Unsupported reduce");
        }
        return replace(compile_op(ctx, to_shapes(ins->inputs()), v));
    }
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx