accuracy_checker.py 10.1 KB
Newer Older
kahmed10's avatar
kahmed10 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#####################################################################################
# The MIT License (MIT)
#
# Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#####################################################################################
import argparse
import numpy as np
import migraphx
import onnxruntime as ort
28
import sys
kahmed10's avatar
kahmed10 committed
29
30
31
32
33
34
35
36


def parse_args():
    parser = argparse.ArgumentParser(
        description=
        'MIGraphX accuracy checker. Use to verify onnx files to ensure MIGraphX\'s output \
                                                  is within tolerance of onnx runtime\'s expected output.'
    )
37
38
39
40
41
42
43
    file_args = parser.add_argument_group(title='file type arguments')
    file_args.add_argument('--onnx', type=str, help='path to onnx file')
    file_args.add_argument('--tf', type=str, help='path to tf pb file')
    parser.add_argument('--provider',
                        type=str,
                        default='CPUExecutionProvider',
                        help='execution provider for onnx runtime \
kahmed10's avatar
kahmed10 committed
44
45
46
47
48
49
50
51
                                (default = CPUExecutionProvider)')
    parser.add_argument('--batch',
                        type=int,
                        default=1,
                        help='batch size (if specified in onnx file)')
    parser.add_argument('--fill1',
                        action='store_true',
                        help='fill all arguments with a value of 1')
52
53
54
    parser.add_argument('--fill0',
                        action='store_true',
                        help='fill all arguments with a value of 0')
kahmed10's avatar
kahmed10 committed
55
56
57
58
59
60
61
    parser.add_argument('--verbose',
                        action='store_true',
                        help='show verbose information (for debugging)')
    parser.add_argument('--tolerance',
                        type=float,
                        default=1e-3,
                        help='accuracy tolerance (default = 1e-3)')
62
63
64
65
    parser.add_argument('--input-dim',
                        type=str,
                        action='append',
                        help='specify input parameter dimension \
66
                                with the following format --input-dim input_name:dim0,dim1,dim2...'
67
                        )
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    parser.add_argument('--target',
                        type=str,
                        default='gpu',
                        help='target to compile and run MIGraphX on')

    parser.add_argument('--ort-run',
                        dest="ort_run",
                        action='store_true',
                        default=False,
                        help='only perform an onnxruntime run')

    parser.add_argument('--ort-logging',
                        dest="ort_logging",
                        action='store_true',
                        default=False,
                        help='Turn on ort VERBOSE logging via session options')

kahmed10's avatar
kahmed10 committed
85
86
87
88
89
90
91
92
93
94
95
    args = parser.parse_args()

    return args


# taken from ../test_runner.py
def check_correctness(gold_outputs,
                      outputs,
                      rtol=1e-3,
                      atol=1e-3,
                      verbose=False):
96
    if len(gold_outputs) > len(outputs):
kahmed10's avatar
kahmed10 committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
        print('Number of outputs {} is not equal to expected number {}'.format(
            len(outputs), len(gold_outputs)))
        return False

    out_num = len(gold_outputs)
    ret = True
    for i in range(out_num):
        if not np.allclose(gold_outputs[i], outputs[i], rtol, atol):
            ret = False
            if verbose:
                print('\nOutput {} is incorrect ...'.format(i))
                print('Expected value: \n{}'.format(gold_outputs[i]))
                print('......')
                print('Actual value: \n{}\n'.format(outputs[i]))
            else:
                print('Outputs do not match')
                break

    return ret


def get_np_datatype(in_type):
    datatypes = {
        'double_type': np.float64,
        'float_type': np.float32,
        'half_type': np.half,
        'int64_type': np.int64,
        'uint64_type': np.uint64,
        'int32_type': np.int32,
        'uint32_type': np.uint32,
        'int16_type': np.int16,
        'uint16_type': np.uint16,
        'int8_type': np.int8,
        'uint8_type': np.uint8,
131
        'bool_type': bool
kahmed10's avatar
kahmed10 committed
132
133
134
135
136
137
138
    }
    return datatypes[in_type]


def main():
    args = parse_args()

139
140
141
142
143
144
145
    use_onnx = True
    if args.onnx == None:
        use_onnx = False
    if not use_onnx and args.tf == None:
        print('Error: please specify either an onnx or tf pb file')
        sys.exit(-1)

kahmed10's avatar
kahmed10 committed
146
    model_name = args.onnx
147

kahmed10's avatar
kahmed10 committed
148
149
    batch = args.batch

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    custom_inputs = args.input_dim

    input_dims = {}
    if custom_inputs != None:
        for input in custom_inputs:
            input_dim = ''.join(input.split(':')[:-1])
            dims = [int(dim) for dim in input.split(':')[-1].split(',')]
            input_dims[input_dim] = dims

    if use_onnx:
        if not input_dims:
            model = migraphx.parse_onnx(model_name, default_dim_value=batch)
        else:
            model = migraphx.parse_onnx(model_name,
                                        default_dim_value=batch,
                                        map_input_dims=input_dims)
    else:
        model_name = args.tf

        if not input_dims:
            model = migraphx.parse_tf(model_name, batch_size=batch)
        else:
            model = migraphx.parse_tf(model_name,
                                      batch_size=batch,
                                      map_input_dims=input_dims)
kahmed10's avatar
kahmed10 committed
175

176
177
178
    if args.verbose:
        print(model)

179
180
    if not args.ort_run:
        model.compile(migraphx.get_target(args.target))
kahmed10's avatar
kahmed10 committed
181
182
183
184
185

    params = {}
    test_inputs = {}
    for name, shape in model.get_parameter_shapes().items():
        if args.verbose:
186
            print(f'Parameter {name} -> {shape}')
kahmed10's avatar
kahmed10 committed
187
188
        in_shape = shape.lens()
        in_type = shape.type_string()
189
        if not args.fill1 and not args.fill0:
kahmed10's avatar
kahmed10 committed
190
191
            test_input = np.random.rand(*(in_shape)).astype(
                get_np_datatype(in_type))
192
        elif not args.fill0:
kahmed10's avatar
kahmed10 committed
193
            test_input = np.ones(in_shape).astype(get_np_datatype(in_type))
194
195
        else:
            test_input = np.zeros(in_shape).astype(get_np_datatype(in_type))
kahmed10's avatar
kahmed10 committed
196
        test_inputs[name] = test_input
197
198
        params[name] = migraphx.argument(test_input)

199
200
    if not args.ort_run:
        pred_migx = np.array(model.run(params)[-1])
kahmed10's avatar
kahmed10 committed
201

202
    if use_onnx:
203
204
205
206
207
208
209
210
211
        sess_op = ort.SessionOptions()

        if args.ort_logging:
            sess_op.log_verbosity_level = 0
            sess_op.log_severity_level = 0

        sess = ort.InferenceSession(model_name,
                                    sess_options=sess_op,
                                    providers=[args.provider])
kahmed10's avatar
kahmed10 committed
212

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
        ort_params = {}
        for input in sess.get_inputs():
            ort_params[input.name] = test_inputs[input.name]

        try:
            pred_fw = sess.run(None, ort_params)[-1]
        except Exception as e:
            if any(input_dims):
                print(
                    'Error: custom input dim may not be compatible with onnx runtime'
                )
            raise e
    else:
        import tensorflow as tf

        def load_tf_graph(model_name):
            with tf.io.gfile.GFile(model_name, 'rb') as f:
                graph_def = tf.compat.v1.GraphDef()
                graph_def.ParseFromString(f.read())

            with tf.compat.v1.Graph().as_default() as graph:
                tf.graph_util.import_graph_def(graph_def)
            return graph

        graph = load_tf_graph(model_name)
        is_nhwc = False
        graph_ops = []
        for op in graph.get_operations():
            graph_ops.append(op.name)
            if 'Conv' in op.node_def.op:
                if 'NHWC' in op.get_attr('data_format').decode('utf-8'):
                    is_nhwc = True
        graph_ops_set = set(graph_ops)
        tf_dict = {}

        for name in test_inputs.keys():
            # graph.get_operations() adds 'import/' to the op name
            tf_name = f'import/{name}'
            if tf_name not in graph_ops_set:
                continue
            x = graph.get_tensor_by_name(f'{tf_name}:0')
            tf_input = test_inputs[name]
            # transpose input for NHWC model
            if tf_input.ndim == 4 and is_nhwc:
                tf_dict[x] = np.transpose(tf_input, (0, 2, 3, 1))
            else:
                tf_dict[x] = tf_input
kahmed10's avatar
kahmed10 committed
260

261
262
263
        # assume last node in graph is output
        # TODO: let user specify op name for output
        y = graph.get_tensor_by_name(f'{graph_ops[-1]}:0')
kahmed10's avatar
kahmed10 committed
264

265
266
267
        with tf.compat.v1.Session(graph=graph) as sess:
            y_out = sess.run(y, feed_dict=tf_dict)
            pred_fw = y_out
kahmed10's avatar
kahmed10 committed
268

269
270
271
272
273
274
275
276
277
    if not args.ort_run:
        is_correct = check_correctness(pred_fw, pred_migx, args.tolerance,
                                       args.tolerance, args.verbose)
        verbose_string = ' Rerun with --verbose for detailed information.' \
                if not args.verbose else ''
        if is_correct:
            print('PASSED: MIGraphX meets tolerance')
        else:
            print('FAILED: MIGraphX is not within tolerance.' + verbose_string)
kahmed10's avatar
kahmed10 committed
278
279
280
281


if __name__ == '__main__':
    main()