dom_info.cpp 9.05 KB
Newer Older
mei-ye's avatar
mei-ye committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
#include <migraphx/dom_info.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

// A unified interface to visit programs top-down or bottom-up.
struct program_visitor
{
    program* p_program;
    bool reversed;
    instruction_ref begin() { return reversed ? std::prev(p_program->end()) : p_program->begin(); }
    instruction_ref end() { return reversed ? p_program->begin() : std::prev(p_program->end()); }

    instruction_ref next(instruction_ref ins) { return reversed ? std::prev(ins) : std::next(ins); }
15
    const std::vector<instruction_ref>& get_inputs(instruction_ref ins) const
mei-ye's avatar
mei-ye committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
    {
        return reversed ? ins->outputs() : ins->inputs();
    }
};

// Query whether ins1 strictly post-dominates ins2.  ins1 strictly post-dominates
// ins2 if ins1 post-dominates ins2 and ins1 is not ins2.
//
bool dom_info::strictly_post_dominates(const instruction* ins1, const instruction* ins2)
{
    if(ins1 != ins2)
    {
        const instruction* iter = ins2;
        while(instr2_ipdom.find(iter) != instr2_ipdom.end())
        {
            if(ins1 == instr2_ipdom[iter])
                return true;
            iter = instr2_ipdom[iter];
        }
    }
    return false;
}

//  Among p_ins's dominators, find ones that strictly dominates or post-dominators others.
//
void dom_info::find_dom_tree(
    std::unordered_map<const instruction*, std::set<const instruction*>>& instr2_doms,
    const instruction* p_ins,
    std::unordered_map<const instruction*, const instruction*>& instr2_dom_tree,
    std::unordered_map<const instruction*, const instruction*>& idom)
{
    for(auto& iter1 : instr2_doms[p_ins])
    {
        auto dom_check = [& dom_tree = idom, ins1 = iter1 ](const instruction* ins2)
        {
            if(ins1 == ins2)
                return false;
            const instruction* iter = ins2;
            ;
            while(dom_tree.find(iter) != dom_tree.end())
            {
                if(ins1 == dom_tree[iter])
                    return true;
                iter = dom_tree[iter];
            }
            return false;
        };

        // check whether iter1 strictly dominates or post-dominates any other notes in
        // p_ins's dominators or post-dominators.
        if(!std::any_of(instr2_doms[p_ins].begin(), instr2_doms[p_ins].end(), dom_check))
        {
            assert(instr2_dom_tree.find(p_ins) == instr2_dom_tree.end());
            instr2_dom_tree[p_ins] = iter1;
        }
    }
}

//  Compute dominator or post-dominator.  Instructions that do not use
//  streams are left out.
//
void dom_info::compute_dom(bool reversed)
{
    std::size_t num_of_instrs = p_program->size();
    if(num_of_instrs == 0)
        return;
    std::unordered_map<const instruction*, std::set<const instruction*>> instr2_doms;
    std::unordered_map<const instruction*, int> instr2_points;
    int cur_points   = reversed ? num_of_instrs - 1 : 0;
    bool seen_stream = false;
    program_visitor vis{p_program, reversed};
    std::unordered_map<const instruction*, const instruction*>& instr2_dom_tree =
        (reversed ? instr2_ipdom : instr2_idom);
    for(auto ins = vis.begin(), end = vis.end();; ins = vis.next(ins))
    {
        const instruction* p_ins = &(*ins);
        instr2_points[p_ins]     = cur_points;
        if(ins->get_stream() < 0)
        {
            if(reversed)
                cur_points--;
            else
                cur_points++;
            ;
            if(ins == end)
                break;
            continue;
        }
        seen_stream              = true;
        const instruction* p_tmp = nullptr;
        int cnt                  = 0;
        // find dominators.
        for(auto&& iter : vis.get_inputs(ins))
        {
            if(iter->get_stream() < 0)
                continue;
            const instruction* p_arg = &(*iter);
            cnt++;
            assert(instr2_doms.find(p_arg) != instr2_doms.end());
            if(p_tmp == nullptr)
                instr2_doms[p_ins] = instr2_doms[p_arg];
            else
                instr2_doms[p_ins] = set_intersection(instr2_doms[p_ins], instr2_doms[p_arg]);
            p_tmp = p_arg;
        }
        // find immediate dominators.
        if(cnt == 1)
        {
            instr2_dom_tree[p_ins] = p_tmp;
        }
        else if(cnt > 0)
        {
            std::unordered_map<const instruction*, const instruction*>& idom =
                reversed ? instr2_ipdom : instr2_idom;
            find_dom_tree(instr2_doms, p_ins, instr2_dom_tree, idom);
        }

        instr2_doms[p_ins].insert(p_ins);
        if(ins == end)
            break;
        if(reversed)
            cur_points--;
        else
            cur_points++;
    }
    if(seen_stream)
    {
        MIGRAPHX_DEBUG(dump_doms(instr2_points, reversed));
    }
}

// Identify split points.  A split point has more than one
// outputs that are executed in different streams.

bool dom_info::is_split_point(instruction_ref ins)
{
152
    int stream = -1;
153
    for(auto&& arg : ins->outputs())
mei-ye's avatar
mei-ye committed
154
    {
155
        int arg_stream = arg->get_stream();
156
157
158
159
160
        if(arg_stream < 0)
            continue;
        if((stream >= 0) && (arg_stream != stream))
            return true;
        stream = arg_stream;
mei-ye's avatar
mei-ye committed
161
    }
162
    return false;
mei-ye's avatar
mei-ye committed
163
164
165
166
167
168
}

// Identify merge points.  A merge point has more than one
// inputs that are executed in different streams.
bool dom_info::is_merge_point(instruction_ref ins)
{
169
    int stream = -1;
170
    for(auto&& arg : ins->inputs())
mei-ye's avatar
mei-ye committed
171
    {
172
        int arg_stream = arg->get_stream();
173
174
175
176
177
        if(arg_stream < 0)
            continue;
        if((stream >= 0) && (arg_stream != stream))
            return true;
        stream = arg_stream;
mei-ye's avatar
mei-ye committed
178
    }
179
    return false;
mei-ye's avatar
mei-ye committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
}

//  Propagate split points through the graph and identify concurrent instructions.
//  Concurrent instructions have the same split points and different streams.
//
void dom_info::propagate_splits(
    int num_of_streams,
    std::unordered_map<const instruction*, std::vector<std::vector<const instruction*>>>&
        concur_instrs,
    std::unordered_map<const instruction*, int>& instr2_points)
{
    std::unordered_map<instruction_ref, bool> is_split;
    std::unordered_map<instruction_ref, bool> is_merge;
    std::unordered_map<instruction_ref, std::set<const instruction*>> split_from;
    int cur_points = 0;
    instr2_points.clear();

    for(auto ins : iterator_for(*p_program))
    {
        const instruction* p_iter = &(*ins);
        instr2_points[p_iter]     = cur_points++;
        int stream                = ins->get_stream();
        if(stream < 0)
            continue;

        is_split[ins] = is_split_point(ins);
        is_merge[ins] = is_merge_point(ins);

        for(auto&& arg : ins->inputs())
        {
            // Input is a split point.
            if(is_split.find(arg) != is_split.end())
                split_from[ins].insert(&(*arg));
            // Union inputs' split points.
            if((split_from.find(arg) != split_from.end()) && !split_from[arg].empty())
            {
                if(split_from.find(ins) == split_from.end())
                    split_from[ins] = split_from[arg];
                else
                    split_from[ins] = set_union(split_from[ins], split_from[arg]);
            }
        }

        if(is_merge[ins])
        {
            assert(split_from.find(ins) != split_from.end());
            std::set<const instruction*> del_set;
            // post-dominator kills split point.
            for(auto& split : split_from[ins])
            {
                if(strictly_post_dominates(p_iter, split))
                    del_set.insert(split);
            }
            split_from[ins] = set_difference(split_from[ins], del_set);
        }

        if(split_from.find(ins) != split_from.end())
        {
            // Collect concur instructions for each split point.
            for(auto& split : split_from[ins])
            {
                if(concur_instrs.find(split) == concur_instrs.end())
                {
                    std::vector<std::vector<const instruction*>> instr_stack;
                    instr_stack.resize(num_of_streams);
                    concur_instrs[split] = instr_stack;
                }
                concur_instrs[split][stream].push_back(p_iter);
            }
        }
    }
}

#ifdef MIGRAPHX_DEBUG_OPT

void dom_info::dump_doms(std::unordered_map<const instruction*, int>& instr2_points, bool post_dom)
{
    std::cout << "---dominator tree---" << std::endl;
    for(auto ins : iterator_for(*p_program))
    {
        const instruction* p_ins = &(*ins);
        if(!post_dom && (instr2_idom.find(p_ins) != instr2_idom.end()))
        {
            const instruction* idom = instr2_idom[p_ins];
            std::cout << "@" << instr2_points[p_ins] << " imm dominator: "
                      << "@" << instr2_points[idom] << std::endl;
        }
        if(post_dom && (instr2_ipdom.find(p_ins) != instr2_ipdom.end()))
        {
            const instruction* ipdom = instr2_ipdom[p_ins];
            std::cout << "@" << instr2_points[p_ins] << " imm post domimator: "
                      << "@" << instr2_points[ipdom] << std::endl;
        }
    }
}
#endif
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx