lowering.cpp 21.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
24
25
26
27
28
29
30
31
32
33
34
35

#include <migraphx/ref/lowering.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/op/identity.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/deconvolution.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/quant_dot.hpp>
#include <migraphx/op/im2col.hpp>
#include <migraphx/op/logsoftmax.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
36
#include <migraphx/op/loop.hpp>
37
38
39
40
41
42
43
44
45
46
47
48
49
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/softmax.hpp>
#include <migraphx/op/argmax.hpp>
#include <migraphx/op/argmin.hpp>
#include <migraphx/op/rnn_var_sl_last_output.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/par_dfor.hpp>
#include <migraphx/clamp.hpp>
#include <migraphx/ref/gemm.hpp>
#include <migraphx/register_op.hpp>
#include <migraphx/make_op.hpp>
50
#include <migraphx/tune_axis.hpp>
51
52
#include <migraphx/pad_calc.hpp>

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#include <unordered_map>
#include <utility>
#include <iostream>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace ref {

template <typename T>
T zero(const T&)
{
    return T(0);
}

template <class T>
typename std::conditional_t<std::is_integral<T>{}, std::make_signed<T>, std::enable_if<true, T>>::
    type
    make_signed(T x)
{
    return x;
}

struct ref_lrn
{
    op::lrn op;

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

    std::string name() const { return "ref::lrn"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            int n_batch         = output_shape.lens()[0];
            int channels        = output_shape.lens()[1];
            int height          = output_shape.lens()[2];
            int width           = output_shape.lens()[3];
            float alphaoverarea = op.alpha / float(op.size);
            int radius_lower    = (op.size - 1) / 2;
            int radius_upper    = op.size / 2 + 1;

            par_dfor(n_batch, height, width)([&](int b, int h, int w) {
                float scale = 0;
                dfor(channels)([&](int c) {
                    auto start = (c - radius_lower) < 0 ? 0 : (c - radius_lower);
                    auto end   = (c + radius_upper) > channels ? channels : (c + radius_upper);
                    for(auto k = start; k < end; ++k)
                    {
                        scale += std::pow(input(b, k, h, w), 2);
                    }
                    scale *= alphaoverarea;
                    scale += op.bias;
                    scale              = std::pow(scale, -op.beta);
                    output(b, c, h, w) = input(b, c, h, w) * scale;
                });
            });
        });
        return result;
    }
};
MIGRAPHX_REGISTER_OP(ref_lrn)

template <class V, class T, class... Ts>
void visit_quantize_impl(V&& v, T&& x, Ts&&... xs)
{
    x.visit([&](auto y) { visit_all(xs...)([&](auto... ys) { v(y, ys...); }); });
}

template <class T, class... Ts>
auto visit_quantize(T&& x, Ts&&... xs)
{
    return [&](auto v) {
        // Workaround for https://gcc.gnu.org/bugzilla/show_bug.cgi?id=70100
        visit_quantize_impl(v, x, xs...);
    };
}

template <class Op>
struct ref_convolution : auto_register_op<ref_convolution<Op>>
{
    ref_convolution() = default;

    ref_convolution(Op pop) : op(std::move(pop)) {}

    Op op;

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

    std::string name() const { return "ref::" + op.name(); }
kahmed10's avatar
kahmed10 committed
151
152
153
154
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        return op.normalize_compute_shape(inputs);
    }
155

156
157
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
158
        std::vector<std::size_t> padding;
159
        if(op.padding_mode != op::padding_mode_t::default_)
160
        {
161
            auto input_lens   = args[0].get_shape().lens();
162
            auto weights_lens = args[1].get_shape().lens();
163
164
165
166
167
168
            padding =
                op.padding_mode == op::same_upper
                    ? calc_dyn_auto_pad(input_lens, weights_lens, op.stride, op.dilation, true)
                    : calc_dyn_auto_pad(input_lens, weights_lens, op.stride, op.dilation, false);
            output_shape = compute_padded_shape(
                args[0].get_shape(), args[1].get_shape(), padding, op.stride, op.dilation);
169
170
171
172
173
174
175
176
177
178
179
        }
        else
        {
            padding = op.padding;
            if(output_shape.dynamic())
            {
                output_shape =
                    op.normalize_compute_shape({args.at(0).get_shape(), args.at(1).get_shape()});
            }
        }

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
        argument result{output_shape};
        visit_quantize(result, args[0], args[1])([&](auto output, auto input, auto weights) {
            auto in_lens = input.get_shape().lens();

            auto wei_lens = weights.get_shape().lens();
            auto wei_n    = wei_lens[0];
            auto wei_c    = wei_lens[1];
            std::vector<std::size_t> win_size(wei_lens.begin() + 1, wei_lens.end());

            par_for(output_shape.elements(), [&](auto i) {
                auto idx_o = output_shape.multi(i);
                auto w     = idx_o[1];
                auto n_dim = idx_o.size();

                std::vector<std::ptrdiff_t> win_start;
                for(std::size_t dim = 2; dim < n_dim; ++dim)
                {
                    auto d_2 = dim - 2;
                    win_start.push_back(std::ptrdiff_t(idx_o[dim] * op.stride[d_2]) -
199
                                        std::ptrdiff_t(padding[d_2]));
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
                }
                const auto group_id = w / (wei_n / op.group);

                shape win_shape{output_shape.type(), win_size};

                double acc = 0.0;
                shape_for_each(win_shape, [&](auto idx_win) {
                    auto k           = idx_win[0];
                    const auto in_ch = group_id * wei_c + k;
                    std::vector<std::ptrdiff_t> idx(idx_o.begin(), idx_o.end());
                    idx[1] = in_ch;
                    std::transform(idx_win.begin() + 1,
                                   idx_win.end(),
                                   win_start.begin(),
                                   idx.begin() + 2,
                                   [](std::ptrdiff_t ii, std::ptrdiff_t jj) { return ii + jj; });
                    std::vector<std::ptrdiff_t> idx_wei(idx_o.size());
                    idx_wei[0] = w;
                    std::copy(idx_win.begin(), idx_win.end(), idx_wei.begin() + 1);
                    if(std::all_of(idx.begin() + 2, idx.end(), [&](auto ii) { return ii >= 0; }) and
                       std::equal(idx.begin(),
                                  idx.end(),
                                  in_lens.begin(),
                                  in_lens.end(),
                                  std::less<std::ptrdiff_t>{}))
                    {
                        acc +=
                            input(idx.begin(), idx.end()) * weights(idx_wei.begin(), idx_wei.end());
                    }
                });

                output[i] = acc;
            });
        });
        return result;
    }
};

struct ref_im2col
{
    op::im2col op;

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

    static std::string name() { return "ref::im2col"; }
kahmed10's avatar
kahmed10 committed
249
250
251
252
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        return op.normalize_compute_shape(inputs);
    }
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        auto input_shape   = args[0].get_shape();
        auto weights_shape = args[1].get_shape();
        visit_all(result, args[0])([&](auto col, auto input) {
            const std::size_t& height   = input_shape.lens()[2];
            const std::size_t& width    = input_shape.lens()[3];
            const std::size_t& channels = weights_shape.lens()[1];
            const std::size_t& kernel_h = weights_shape.lens()[2];
            const std::size_t& kernel_w = weights_shape.lens()[3];
            const std::size_t& pad_h    = op.padding[0];
            const std::size_t& pad_w    = op.padding[1];
            const std::size_t& stride_h = op.stride[0];
            const std::size_t& stride_w = op.stride[1];

            long kdiv2_h = long(kernel_h) / 2;
            long kdiv2_w = long(kernel_w) / 2;
            // calculate output sizes
            const std::size_t col_height = (height - kernel_h + 2 * pad_h) / stride_h + 1;
            const std::size_t col_width  = (width - kernel_w + 2 * pad_w) / stride_w + 1;
            // account for padding for the starting position of the input pixels
            long iinput = kdiv2_h - long(pad_h);
            // loop over output pixels (ioutput, joutput)
            for(std::size_t ioutput = 0; ioutput < col_height; ioutput++, iinput += stride_h)
            {
                long jinput = kdiv2_w - long(pad_w);
                for(std::size_t joutput = 0; joutput < col_width; joutput++, jinput += stride_w)
                {
                    // compute linear index for output
                    std::size_t ldx = ioutput * col_width + joutput;
                    std::size_t p   = 0;
                    dfor(channels,
                         kernel_h,
                         kernel_w)([&](std::size_t c, std::size_t koffset, std::size_t loffset) {
                        auto idx    = iinput + long(koffset) - kdiv2_h;
                        auto jdx    = jinput + long(loffset) - kdiv2_w;
                        col(ldx, p) = ((idx >= 0) && (idx < height) && (jdx >= 0) && (jdx < width))
                                          ? input(0, c, idx, jdx)
                                          : 0;
                        p++;
                    });
                }
            }
        });
        return result;
    }
};
MIGRAPHX_REGISTER_OP(ref_im2col)

struct ref_op
{
    operation op = op::identity{};
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }
    std::string name() const { return "ref::op"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, const std::vector<argument>& args) const
    {
        return op.compute(output_shape, args);
    }
    value to_value() const
    {
        value v;
        v["name"]     = op.name();
        v["operator"] = op.to_value();
        return v;
    }
    void from_value(const value& v)
    {
        op = make_op(v.at("name").to<std::string>(), v.at("operator"));
    }
    friend std::ostream& operator<<(std::ostream& os, const ref_op& x)
    {
        os << "ref::" << x.op;
        return os;
    }
};
MIGRAPHX_REGISTER_OP(ref_op)

struct ref_pad
{
    op::pad op;

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

    std::string name() const { return "ref::pad"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        assert(output_shape.standard());
        argument result{output_shape};
        result.visit([&](auto output) {
            using type = typename decltype(output)::value_type;
            std::fill(output.begin(), output.end(), pad_clamp<type>(op.value));
        });

        visit_all(result, args[0])([&](auto output, auto input) {
            shape_for_each(input.get_shape(), [&](const auto& idx) {
                std::vector<std::size_t> new_idx(idx.size());
                std::transform(
                    idx.begin(), idx.end(), op.pads.begin(), new_idx.begin(), [](auto i, auto j) {
                        return i + j;
                    });
                output(new_idx.begin(), new_idx.end()) = input(idx.begin(), idx.end());
            });
        });

        return result;
    }
};
MIGRAPHX_REGISTER_OP(ref_pad)

struct ref_gemm
{
    op::dot op;

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }
    std::string name() const { return "ref::dot"; }
384
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
385
386
387
388

    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
389
        migemm(result, args[0], args[1], 1.0f, 0.0f);
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

        return result;
    }
};
MIGRAPHX_REGISTER_OP(ref_gemm)

struct ref_quant_gemm
{
    op::quant_dot op;

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

    std::string name() const { return "ref::quant_dot"; }
407
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424

    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        // first, convert the args[0] and args[1] from int8_t to int32_t
        argument arg_0{{shape::int32_type, {args.at(0).get_shape().lens()}}};
        argument arg_1{{shape::int32_type, {args.at(1).get_shape().lens()}}};
        arg_0.visit([&](auto output) {
            args.at(0).visit(
                [&](auto input) { std::copy(input.begin(), input.end(), output.begin()); });
        });

        arg_1.visit([&](auto output) {
            args.at(1).visit(
                [&](auto input) { std::copy(input.begin(), input.end(), output.begin()); });
        });

425
        migemm(result, arg_0, arg_1, int32_t{1}, int32_t{0});
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447

        return result;
    }
};
MIGRAPHX_REGISTER_OP(ref_gemm)

template <class Op>
struct ref_softmax : auto_register_op<ref_softmax<Op>>
{
    ref_softmax() = default;

    ref_softmax(Op pop) : op(std::move(pop)) {}

    Op op;

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

    std::string name() const { return "ref::" + op.name(); }
Shucai Xiao's avatar
Shucai Xiao committed
448
449
450
451
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        return op.normalize_compute_shape(inputs);
    }
452
453
454
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
455
456
457
        auto batch_lens        = output_shape.lens();
        int64_t tuned_axis     = tune_axis(args[0].get_shape().lens().size(), op.axis, op.name());
        std::size_t n_dims     = batch_lens[tuned_axis];
458
459
460
461
        batch_lens[tuned_axis] = 1;
        shape batch_shape{shape::int32_type, batch_lens};

        visit_all(result, args[0])([&](auto output, auto input) {
462
            using value_type = accumulator_type<typename decltype(input)::value_type>;
463
464
465
466
467
468
469
470
            std::vector<value_type> batch_max(batch_shape.elements(),
                                              std::numeric_limits<value_type>::lowest());
            std::vector<value_type> batch_sum(batch_shape.elements(), value_type(0));
            par_for(batch_shape.elements(), [&](auto i) {
                auto idx = batch_shape.multi(i);
                for(std::size_t j = 0; j < n_dims; ++j)
                {
                    idx[tuned_axis] = j;
471
472
                    batch_max[i] =
                        std::max<value_type>(batch_max[i], input(idx.begin(), idx.end()));
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
                }

                for(std::size_t j = 0; j < n_dims; ++j)
                {
                    idx[tuned_axis]   = j;
                    std::size_t index = output_shape.index(idx);
                    output[index]     = std::exp(input[index] - batch_max[i]);
                }

                for(std::size_t j = 0; j < n_dims; ++j)
                {
                    idx[tuned_axis] = j;
                    batch_sum[i] += output(idx.begin(), idx.end());
                }

                for(std::size_t j = 0; j < n_dims; ++j)
                {
                    idx[tuned_axis] = j;
                    output(idx.begin(), idx.end()) =
                        op.output()(output(idx.begin(), idx.end()), batch_sum[i]);
                }
            });
        });

        return result;
    }
};

struct ref_rnn_var_sl_last_output
{
    op::rnn_var_sl_last_output op;

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

    std::string name() const { return "ref::rnn_var_sl_last_output"; }

    shape compute_shape(std::vector<shape> inputs) const
    {
        return op.compute_shape(std::move(inputs));
    }

    argument compute(const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        auto out_comp_lens = args[0].get_shape().lens();
        out_comp_lens[0]   = 1;
        shape out_comp_s{output_shape.type(), out_comp_lens};

        visit_all(result, args[0])([&](auto output, auto input) {
            args[1].visit([&](auto seq_lens) {
                par_for(output_shape.elements(), [&](auto i) {
                    auto idx = out_comp_s.multi(i);
                    auto b   = idx[2];
                    if(op.direction == op::rnn_direction::reverse or idx[1] == 1)
                    {
                        idx[0] = 0;
                    }
                    else
                    {
                        idx[0] = seq_lens[b] - 1;
                    }
                    output[i] = input(idx.begin(), idx.end());
                });
            });
        });

        return result;
    }
};
MIGRAPHX_REGISTER_OP(ref_rnn_var_sl_last_output)

struct ref_apply
{
Shucai Xiao's avatar
Shucai Xiao committed
550
    module* mod;
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
    std::unordered_map<std::string, std::function<void(instruction_ref)>> apply_map{};

    template <class T>
    auto simple_op()
    {
        return [this](instruction_ref ins) { apply_simple_op<T>(ins); };
    }

    template <class T, class Op>
    auto extend_op()
    {
        return [this](instruction_ref ins) { apply_extend_op<T, Op>(ins); };
    }

    void init()
    {
        apply_map["convolution"] = extend_op<ref_convolution<op::convolution>, op::convolution>();
568
569
        apply_map["dot"]         = extend_op<ref_gemm, op::dot>();
        apply_map["quant_dot"]   = extend_op<ref_quant_gemm, op::quant_dot>();
570
571
572
573
574
575
576
577
578
579
580
581
582
583
        apply_map["quant_convolution"] =
            extend_op<ref_convolution<op::quant_convolution>, op::quant_convolution>();
        apply_map["im2col"]     = extend_op<ref_im2col, op::im2col>();
        apply_map["logsoftmax"] = extend_op<ref_softmax<op::logsoftmax>, op::logsoftmax>();
        apply_map["lrn"]        = extend_op<ref_lrn, op::lrn>();
        apply_map["pad"]        = extend_op<ref_pad, op::pad>();
        apply_map["softmax"]    = extend_op<ref_softmax<op::softmax>, op::softmax>();
        apply_map["rnn_var_sl_last_output"] =
            extend_op<ref_rnn_var_sl_last_output, op::rnn_var_sl_last_output>();
    }

    void apply()
    {
        init();
Shucai Xiao's avatar
Shucai Xiao committed
584
        for(auto it : iterator_for(*mod))
585
        {
586
            if(apply_map.count(it->name()) > 0)
587
588
589
590
591
592
593
594
595
596
597
598
            {
                apply_map.at(it->name())(it);
            }
            else if(is_context_free(it->get_operator()))
            {
                apply_ref_op(it);
            }
        }
    }

    void apply_ref_op(instruction_ref ins) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
599
        mod->replace_instruction(ins, ref_op{ins->get_operator()}, ins->inputs());
600
601
602
603
604
    }

    template <class T>
    void apply_simple_op(instruction_ref ins)
    {
Shucai Xiao's avatar
Shucai Xiao committed
605
        mod->replace_instruction(ins, T{}, ins->inputs());
606
607
608
609
610
611
    }

    template <class T, class Op>
    void apply_extend_op(instruction_ref ins)
    {
        auto&& op = any_cast<Op>(ins->get_operator());
Shucai Xiao's avatar
Shucai Xiao committed
612
        mod->replace_instruction(ins, T{op}, ins->inputs());
613
614
615
    }
};

616
void lowering::apply(module& m) const { ref_apply{&m}.apply(); }
617
618
619
620

} // namespace ref
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx