simplify_qdq_test.cpp 49.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
turneram's avatar
turneram committed
24
25
#include <migraphx/simplify_qdq.hpp>
#include <migraphx/program.hpp>
26
#include <migraphx/register_target.hpp>
turneram's avatar
turneram committed
27
28
29
#include <migraphx/instruction.hpp>
#include <test.hpp>
#include <migraphx/make_op.hpp>
30
#include <migraphx/op/pooling.hpp>
turneram's avatar
turneram committed
31
32
33
34
35
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/verify.hpp>
36
#include <migraphx/apply_alpha_beta.hpp>
turneram's avatar
turneram committed
37
38
39
40
41
42
43
44
45
46

bool is_convolution(const migraphx::instruction& ins) { return ins.name() == "convolution"; }
bool is_dot(const migraphx::instruction& ins) { return ins.name() == "dot"; }

void run_pass(migraphx::module& m)
{
    migraphx::simplify_qdq sqdq;
    sqdq.apply(m);
}

47
migraphx::instruction_ref broadcast_scale(migraphx::module& m,
turneram's avatar
turneram committed
48
                                          migraphx::instruction_ref scale,
49
50
                                          const std::vector<std::size_t>& out_lens,
                                          std::size_t axis)
turneram's avatar
turneram committed
51
{
52
53
54
    if(scale->get_shape().lens() == out_lens)
        return scale;

turneram's avatar
turneram committed
55
    migraphx::instruction_ref scale_mb;
56
57
    auto scale_lens = scale->get_shape().lens();
    if(scale_lens.front() == 1 and scale_lens.size() == 1)
turneram's avatar
turneram committed
58
        scale_mb =
59
            m.add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", out_lens}}), scale);
turneram's avatar
turneram committed
60
    else
61
        scale_mb = m.add_instruction(
62
63
64
65
66
67
68
69
70
71
72
73
74
            migraphx::make_op("broadcast", {{"axis", axis}, {"out_lens", out_lens}}), scale);
    return scale_mb;
}

migraphx::instruction_ref add_quantize_op(migraphx::module& m,
                                          const std::string& name,
                                          migraphx::instruction_ref x,
                                          migraphx::instruction_ref scale,
                                          migraphx::instruction_ref shift,
                                          std::size_t q_axis = 1)
{
    auto lens     = x->get_shape().lens();
    auto scale_mb = broadcast_scale(m, scale, lens, q_axis);
turneram's avatar
turneram committed
75
    auto shift_mb =
76
        m.add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", lens}}), shift);
turneram's avatar
turneram committed
77
78
79
80
81
82
    return m.add_instruction(migraphx::make_op(name), x, scale_mb, shift_mb);
}

migraphx::instruction_ref add_quantize_op(migraphx::module& m,
                                          const std::string& name,
                                          migraphx::instruction_ref x,
83
84
                                          migraphx::instruction_ref scale,
                                          std::size_t q_axis = 1)
turneram's avatar
turneram committed
85
{
86
87
    auto lens     = x->get_shape().lens();
    auto scale_mb = broadcast_scale(m, scale, lens, q_axis);
turneram's avatar
turneram committed
88
89
90
    return m.add_instruction(migraphx::make_op(name), x, scale_mb);
}

91
92
93
94
95
96
97
98
99
100
101
102
migraphx::instruction_ref add_scale_mul(migraphx::module& m,
                                        migraphx::instruction_ref scale1,
                                        migraphx::instruction_ref scale2,
                                        std::size_t axis1,
                                        std::size_t axis2,
                                        const std::vector<std::size_t>& out_lens)
{
    auto scale1_mb = broadcast_scale(m, scale1, out_lens, axis1);
    auto scale2_mb = broadcast_scale(m, scale2, out_lens, axis2);
    return m.add_instruction(migraphx::make_op("mul"), scale1_mb, scale2_mb);
}

turneram's avatar
turneram committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
TEST_CASE(remove_qdq)
{
    migraphx::shape sh1{migraphx::shape::float_type, {100, 100}};
    migraphx::shape sh2{migraphx::shape::float_type, {100, 100}};

    migraphx::module m1;
    {
        auto t1    = m1.add_parameter("t1", sh1);
        auto t2    = m1.add_parameter("t2", sh2);
        auto scale = m1.add_literal(0.5f);
        auto zero  = m1.add_literal(std::int8_t{0});

        auto q1  = add_quantize_op(m1, "quantizelinear", t1, scale, zero);
        auto d1  = add_quantize_op(m1, "dequantizelinear", q1, scale, zero);
        auto q2  = add_quantize_op(m1, "quantizelinear", t2, scale, zero);
        auto d2  = add_quantize_op(m1, "dequantizelinear", q2, scale, zero);
        auto add = m1.add_instruction(migraphx::make_op("add"), d1, d2);
        m1.add_return({add});
    }

    migraphx::module m2;
    {
        auto t1 = m2.add_parameter("t1", sh1);
        auto t2 = m2.add_parameter("t2", sh2);

        auto add = m2.add_instruction(migraphx::make_op("add"), t1, t2);
        m2.add_return({add});
    }

    run_pass(m1);
    EXPECT(m1 == m2);
}

TEST_CASE(qdq_different_scales)
{
    migraphx::shape sh1{migraphx::shape::float_type, {100, 100}};
    migraphx::shape sh2{migraphx::shape::float_type, {100, 100}};

    migraphx::module m1;
    {
        auto t1     = m1.add_parameter("t1", sh1);
        auto t2     = m1.add_parameter("t2", sh2);
        auto scale1 = m1.add_literal(0.5f);
        auto scale2 = m1.add_literal(0.4f);
        auto zero   = m1.add_literal(std::int8_t{0});

        auto q1  = add_quantize_op(m1, "quantizelinear", t1, scale1, zero);
        auto d1  = add_quantize_op(m1, "dequantizelinear", q1, scale2, zero);
        auto q2  = add_quantize_op(m1, "quantizelinear", t2, scale1, zero);
        auto d2  = add_quantize_op(m1, "dequantizelinear", q2, scale2, zero);
        auto add = m1.add_instruction(migraphx::make_op("add"), d1, d2);
        m1.add_return({add});
    }

    migraphx::module m2 = m1;

    run_pass(m1);
    EXPECT(m1 == m2);
}

TEST_CASE(dot)
{
    migraphx::shape sh1{migraphx::shape::float_type, {1280, 1000}};
    migraphx::shape sh2{migraphx::shape::float_type, {1000, 1024}};

    migraphx::module m1;
    {
        auto t1    = m1.add_parameter("t1", sh1);
        auto t2    = m1.add_parameter("t2", sh2);
        auto scale = m1.add_literal(0.5f);
        auto zero  = m1.add_literal(std::int8_t{0});

175
176
177
178
179
        auto q1  = add_quantize_op(m1, "quantizelinear", t1, scale, zero);
        auto d1  = add_quantize_op(m1, "dequantizelinear", q1, scale, zero);
        auto q2  = add_quantize_op(m1, "quantizelinear", t2, scale, zero);
        auto d2  = add_quantize_op(m1, "dequantizelinear", q2, scale, zero);
        auto dot = m1.add_instruction(migraphx::make_op("dot"), d1, d2);
turneram's avatar
turneram committed
180
181
182
        m1.add_return({dot});
    }

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    migraphx::module m2;
    {
        auto t1    = m2.add_parameter("t1", sh1);
        auto t2    = m2.add_parameter("t2", sh2);
        auto scale = m2.add_literal(0.5f);
        auto zero  = m2.add_literal(std::int8_t{0});

        auto q1 = add_quantize_op(m2, "quantizelinear", t1, scale, zero);
        auto q2 = add_quantize_op(m2, "quantizelinear", t2, scale, zero);

        auto dot       = m2.add_instruction(migraphx::make_op("quant_dot"), q1, q2);
        auto out_scale = add_scale_mul(m2, scale, scale, 1, 1, dot->get_shape().lens());
        auto d3        = add_quantize_op(m2, "dequantizelinear", dot, out_scale);
        m2.add_return({d3});
    }

    run_pass(m1);
    EXPECT(m1 == m2);
}

TEST_CASE(dot_multi_scale)
{
    migraphx::shape sh1{migraphx::shape::float_type, {1280, 1000}};
    migraphx::shape sh2{migraphx::shape::float_type, {1000, 1024}};
    migraphx::shape sh3{migraphx::shape::float_type, {1280}};

    migraphx::module m1;
    {
        auto t1     = m1.add_parameter("t1", sh1);
        auto t2     = m1.add_parameter("t2", sh2);
        auto scale1 = m1.add_literal(migraphx::generate_literal(sh3, 0));
        auto scale2 = m1.add_literal(0.4f);
        auto zero   = m1.add_literal(std::int8_t{0});

        auto q1  = add_quantize_op(m1, "quantizelinear", t1, scale1, zero, 0);
        auto d1  = add_quantize_op(m1, "dequantizelinear", q1, scale1, zero, 0);
        auto q2  = add_quantize_op(m1, "quantizelinear", t2, scale2, zero, 1);
        auto d2  = add_quantize_op(m1, "dequantizelinear", q2, scale2, zero, 1);
        auto dot = m1.add_instruction(migraphx::make_op("dot"), d1, d2);
        m1.add_return({dot});
    }

turneram's avatar
turneram committed
225
226
227
228
    migraphx::module m2;
    {
        auto t1     = m2.add_parameter("t1", sh1);
        auto t2     = m2.add_parameter("t2", sh2);
229
230
        auto scale1 = m2.add_literal(migraphx::generate_literal(sh3, 0));
        auto scale2 = m2.add_literal(0.4f);
turneram's avatar
turneram committed
231
232
        auto zero   = m2.add_literal(std::int8_t{0});

233
234
235
236
237
238
        auto q1 = add_quantize_op(m2, "quantizelinear", t1, scale1, zero, 0);
        auto q2 = add_quantize_op(m2, "quantizelinear", t2, scale2, zero, 1);

        auto dot       = m2.add_instruction(migraphx::make_op("quant_dot"), q1, q2);
        auto out_scale = add_scale_mul(m2, scale1, scale2, 0, 1, dot->get_shape().lens());
        auto d3        = add_quantize_op(m2, "dequantizelinear", dot, out_scale);
turneram's avatar
turneram committed
239
240
241
242
243
244
245
        m2.add_return({d3});
    }

    run_pass(m1);
    EXPECT(m1 == m2);
}

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
TEST_CASE(dot_broadcasted)
{
    migraphx::shape sh1{migraphx::shape::float_type, {2, 1280, 1000}};
    migraphx::shape sh2{migraphx::shape::float_type, {1000, 1024}};

    migraphx::module m1;
    {
        auto t1    = m1.add_parameter("t1", sh1);
        auto t2    = m1.add_parameter("t2", sh2);
        auto scale = m1.add_literal(0.5f);
        auto zero  = m1.add_literal(std::int8_t{0});

        auto q1    = add_quantize_op(m1, "quantizelinear", t1, scale, zero);
        auto d1    = add_quantize_op(m1, "dequantizelinear", q1, scale, zero);
        auto q2    = add_quantize_op(m1, "quantizelinear", t2, scale, zero);
        auto d2    = add_quantize_op(m1, "dequantizelinear", q2, scale, zero);
        auto d2_mb = m1.add_instruction(
            migraphx::make_op("multibroadcast", {{"out_lens", {2, 1000, 1024}}}), d2);
        auto dot = m1.add_instruction(migraphx::make_op("dot"), d1, d2_mb);
        m1.add_return({dot});
    }

    migraphx::module m2;
    {
        auto t1    = m2.add_parameter("t1", sh1);
        auto t2    = m2.add_parameter("t2", sh2);
        auto scale = m2.add_literal(0.5f);
        auto zero  = m2.add_literal(std::int8_t{0});

        auto q1    = add_quantize_op(m2, "quantizelinear", t1, scale, zero);
        auto q2    = add_quantize_op(m2, "quantizelinear", t2, scale, zero);
        auto q2_mb = m2.add_instruction(
            migraphx::make_op("multibroadcast", {{"out_lens", {2, 1000, 1024}}}), q2);

        auto dot       = m2.add_instruction(migraphx::make_op("quant_dot"), q1, q2_mb);
        auto out_scale = add_scale_mul(m2, scale, scale, 1, 1, dot->get_shape().lens());
        auto d3        = add_quantize_op(m2, "dequantizelinear", dot, out_scale);
        m2.add_return({d3});
    }

    run_pass(m1);
    EXPECT(m1 == m2);
}

TEST_CASE(dot_transposed)
{
    migraphx::shape sh1{migraphx::shape::float_type, {1280, 1000}};
    migraphx::shape sh2{migraphx::shape::float_type, {1024, 1000}};

    migraphx::module m1;
    {
        auto t1    = m1.add_parameter("t1", sh1);
        auto t2    = m1.add_parameter("t2", sh2);
        auto scale = m1.add_literal(0.5f);
        auto zero  = m1.add_literal(std::int8_t{0});

        auto q1 = add_quantize_op(m1, "quantizelinear", t1, scale, zero);
        auto d1 = add_quantize_op(m1, "dequantizelinear", q1, scale, zero);
        auto q2 = add_quantize_op(m1, "quantizelinear", t2, scale, zero);
        auto d2 = add_quantize_op(m1, "dequantizelinear", q2, scale, zero);
        auto d2_t =
            m1.add_instruction(migraphx::make_op("transpose", {{"permutation", {1, 0}}}), d2);
        auto dot = m1.add_instruction(migraphx::make_op("dot"), d1, d2_t);
        m1.add_return({dot});
    }

    migraphx::module m2;
    {
        auto t1    = m2.add_parameter("t1", sh1);
        auto t2    = m2.add_parameter("t2", sh2);
        auto scale = m2.add_literal(0.5f);
        auto zero  = m2.add_literal(std::int8_t{0});

        auto q1 = add_quantize_op(m2, "quantizelinear", t1, scale, zero);
        auto q2 = add_quantize_op(m2, "quantizelinear", t2, scale, zero);
        auto q2_t =
            m2.add_instruction(migraphx::make_op("transpose", {{"permutation", {1, 0}}}), q2);

        auto dot       = m2.add_instruction(migraphx::make_op("quant_dot"), q1, q2_t);
        auto out_scale = add_scale_mul(m2, scale, scale, 1, 1, dot->get_shape().lens());
        auto d3        = add_quantize_op(m2, "dequantizelinear", dot, out_scale);
        m2.add_return({d3});
    }

    run_pass(m1);
    EXPECT(m1 == m2);
}

TEST_CASE(dot_multi_scale_transposed_broadcasted)
{
    migraphx::shape sh1{migraphx::shape::float_type, {2, 3, 1280, 1000}};
    migraphx::shape sh2{migraphx::shape::float_type, {1024, 1000}};
    migraphx::shape sh3{migraphx::shape::float_type, {1280}};
    migraphx::shape sh4{migraphx::shape::float_type, {1024}};

    migraphx::module m1;
    {
        auto t1     = m1.add_parameter("t1", sh1);
        auto t2     = m1.add_parameter("t2", sh2);
        auto scale1 = m1.add_literal(migraphx::generate_literal(sh3, 0));
        auto scale2 = m1.add_literal(migraphx::generate_literal(sh4, 0));
        auto zero   = m1.add_literal(std::int8_t{0});

        auto q1 = add_quantize_op(m1, "quantizelinear", t1, scale1, zero, 2);
        auto d1 = add_quantize_op(m1, "dequantizelinear", q1, scale1, zero, 2);
        auto q2 = add_quantize_op(m1, "quantizelinear", t2, scale2, zero, 0);
        auto d2 = add_quantize_op(m1, "dequantizelinear", q2, scale2, zero, 0);
        auto d2_t =
            m1.add_instruction(migraphx::make_op("transpose", {{"permutation", {1, 0}}}), d2);
        auto d2_mb = m1.add_instruction(
            migraphx::make_op("multibroadcast", {{"out_lens", {2, 3, 1000, 1024}}}), d2_t);
        auto dot = m1.add_instruction(migraphx::make_op("dot"), d1, d2_mb);
        m1.add_return({dot});
    }

    migraphx::module m2;
    {
        auto t1     = m2.add_parameter("t1", sh1);
        auto t2     = m2.add_parameter("t2", sh2);
        auto scale1 = m2.add_literal(migraphx::generate_literal(sh3, 0));
        auto scale2 = m2.add_literal(migraphx::generate_literal(sh4, 0));
        auto zero   = m2.add_literal(std::int8_t{0});

        auto q1 = add_quantize_op(m2, "quantizelinear", t1, scale1, zero, 2);
        auto q2 = add_quantize_op(m2, "quantizelinear", t2, scale2, zero, 0);
        auto q2_t =
            m2.add_instruction(migraphx::make_op("transpose", {{"permutation", {1, 0}}}), q2);
        auto q2_mb = m2.add_instruction(
            migraphx::make_op("multibroadcast", {{"out_lens", {2, 3, 1000, 1024}}}), q2_t);

        auto dot       = m2.add_instruction(migraphx::make_op("quant_dot"), q1, q2_mb);
        auto out_scale = add_scale_mul(m2, scale1, scale2, 2, 3, dot->get_shape().lens());
        auto d3        = add_quantize_op(m2, "dequantizelinear", dot, out_scale);
        m2.add_return({d3});
    }

    run_pass(m1);
    EXPECT(m1 == m2);
}

TEST_CASE(dot_multi_scale_unsupported_axis)
{
    migraphx::shape sh1{migraphx::shape::float_type, {1280, 1000}};
    migraphx::shape sh2{migraphx::shape::float_type, {1000, 1024}};
    migraphx::shape sh3{migraphx::shape::float_type, {1000}};

    migraphx::module m1;
    {
        auto t1     = m1.add_parameter("t1", sh1);
        auto t2     = m1.add_parameter("t2", sh2);
        auto scale1 = m1.add_literal(migraphx::generate_literal(sh3, 0));
        auto scale2 = m1.add_literal(0.4f);
        auto zero   = m1.add_literal(std::int8_t{0});

        auto q1  = add_quantize_op(m1, "quantizelinear", t1, scale1, zero, 1);
        auto d1  = add_quantize_op(m1, "dequantizelinear", q1, scale1, zero, 1);
        auto q2  = add_quantize_op(m1, "quantizelinear", t2, scale2, zero, 1);
        auto d2  = add_quantize_op(m1, "dequantizelinear", q2, scale2, zero, 1);
        auto dot = m1.add_instruction(migraphx::make_op("dot"), d1, d2);
        m1.add_return({dot});
    }

    migraphx::module m2;
    {
        auto t1  = m2.add_parameter("t1", sh1);
        auto t2  = m2.add_parameter("t2", sh2);
        auto dot = m2.add_instruction(migraphx::make_op("dot"), t1, t2);
        m2.add_return({dot});
    }

    run_pass(m1);
    EXPECT(m1 == m2);
}

turneram's avatar
turneram committed
420
421
422
423
424
425
426
427
428
429
430
431
TEST_CASE(dot_non_zero_point)
{
    migraphx::shape sh1{migraphx::shape::float_type, {1280, 1000}};
    migraphx::shape sh2{migraphx::shape::float_type, {1000, 1024}};

    migraphx::module m1;
    {
        auto t1    = m1.add_parameter("t1", sh1);
        auto t2    = m1.add_parameter("t2", sh2);
        auto scale = m1.add_literal(0.5f);
        auto zero  = m1.add_literal(std::int8_t{1});

432
433
434
435
436
        auto q1  = add_quantize_op(m1, "quantizelinear", t1, scale, zero);
        auto d1  = add_quantize_op(m1, "dequantizelinear", q1, scale, zero);
        auto q2  = add_quantize_op(m1, "quantizelinear", t2, scale, zero);
        auto d2  = add_quantize_op(m1, "dequantizelinear", q2, scale, zero);
        auto dot = m1.add_instruction(migraphx::make_op("dot"), d1, d2);
turneram's avatar
turneram committed
437
438
439
440
441
        m1.add_return({dot});
    }

    migraphx::module m2;
    {
442
443
444
        auto t1  = m2.add_parameter("t1", sh1);
        auto t2  = m2.add_parameter("t2", sh2);
        auto dot = m2.add_instruction(migraphx::make_op("dot"), t1, t2);
turneram's avatar
turneram committed
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
        m2.add_return({dot});
    }

    run_pass(m1);
    EXPECT(m1 == m2);
}

TEST_CASE(dot_uint8)
{
    migraphx::shape sh1{migraphx::shape::float_type, {1280, 1000}};
    migraphx::shape sh2{migraphx::shape::float_type, {1000, 1024}};

    migraphx::module m1;
    {
        auto t1    = m1.add_parameter("t1", sh1);
        auto t2    = m1.add_parameter("t2", sh2);
        auto scale = m1.add_literal(0.5f);
        auto zero  = m1.add_literal(std::uint8_t{0});

464
465
466
467
468
        auto q1  = add_quantize_op(m1, "quantizelinear", t1, scale, zero);
        auto d1  = add_quantize_op(m1, "dequantizelinear", q1, scale, zero);
        auto q2  = add_quantize_op(m1, "quantizelinear", t2, scale, zero);
        auto d2  = add_quantize_op(m1, "dequantizelinear", q2, scale, zero);
        auto dot = m1.add_instruction(migraphx::make_op("dot"), d1, d2);
turneram's avatar
turneram committed
469
470
471
472
473
        m1.add_return({dot});
    }

    migraphx::module m2;
    {
474
475
476
        auto t1  = m2.add_parameter("t1", sh1);
        auto t2  = m2.add_parameter("t2", sh2);
        auto dot = m2.add_instruction(migraphx::make_op("dot"), t1, t2);
turneram's avatar
turneram committed
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
        m2.add_return({dot});
    }

    run_pass(m1);
    EXPECT(m1 == m2);
}

TEST_CASE(dot_add)
{
    migraphx::shape sh1{migraphx::shape::float_type, {1280, 1000}};
    migraphx::shape sh2{migraphx::shape::float_type, {1000, 1024}};
    migraphx::shape sh3{migraphx::shape::float_type, {1280, 1024}};

    migraphx::module m1;
    {
        auto t1    = m1.add_parameter("t1", sh1);
        auto t2    = m1.add_parameter("t2", sh2);
        auto ab    = m1.add_parameter("ab", sh3);
        auto scale = m1.add_literal(0.5f);
        auto zero  = m1.add_literal(std::int8_t{0});

498
499
500
501
502
        auto q1  = add_quantize_op(m1, "quantizelinear", t1, scale, zero);
        auto d1  = add_quantize_op(m1, "dequantizelinear", q1, scale, zero);
        auto q2  = add_quantize_op(m1, "quantizelinear", t2, scale, zero);
        auto d2  = add_quantize_op(m1, "dequantizelinear", q2, scale, zero);
        auto dot = m1.add_instruction(migraphx::make_op("dot"), d1, d2);
turneram's avatar
turneram committed
503
504
505
506
507
508
509
510
        auto q3  = add_quantize_op(m1, "quantizelinear", dot, scale, zero);
        auto d3  = add_quantize_op(m1, "dequantizelinear", q3, scale, zero);
        auto add = m1.add_instruction(migraphx::make_op("add"), d3, ab);
        m1.add_return({add});
    }

    migraphx::module m2;
    {
511
512
513
514
515
516
517
518
519
520
521
522
        auto t1    = m2.add_parameter("t1", sh1);
        auto t2    = m2.add_parameter("t2", sh2);
        auto ab    = m2.add_parameter("ab", sh3);
        auto scale = m2.add_literal(0.5f);
        auto zero  = m2.add_literal(std::int8_t{0});

        auto q1        = add_quantize_op(m2, "quantizelinear", t1, scale, zero);
        auto q2        = add_quantize_op(m2, "quantizelinear", t2, scale, zero);
        auto dot       = m2.add_instruction(migraphx::make_op("quant_dot"), q1, q2);
        auto out_scale = add_scale_mul(m2, scale, scale, 1, 1, dot->get_shape().lens());
        auto d3        = add_quantize_op(m2, "dequantizelinear", dot, out_scale);
        auto add       = m2.add_instruction(migraphx::make_op("add"), d3, ab);
turneram's avatar
turneram committed
523
524
525
526
527
528
529
        m2.add_return({add});
    }

    run_pass(m1);
    EXPECT(m1 == m2);
}

530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
TEST_CASE(dot_add_multiple_dq_use)
{
    migraphx::shape sh1{migraphx::shape::float_type, {32, 1}};
    migraphx::shape sh2{migraphx::shape::float_type, {32, 32}};
    migraphx::module m1;
    {
        auto t1    = m1.add_parameter("t1", sh1);
        auto t2    = m1.add_parameter("t2", sh2);
        auto scale = m1.add_literal(0.5f);
        auto zero  = m1.add_literal(std::int8_t{0});

        auto q1 = add_quantize_op(m1, "quantizelinear", t1, scale, zero);
        auto d1 = add_quantize_op(m1, "dequantizelinear", q1, scale, zero);
        auto d1_t =
            m1.add_instruction(migraphx::make_op("transpose", {{"permutation", {1, 0}}}), d1);
        auto d1_tmb =
            m1.add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {32, 32}}}), d1_t);
        auto d1_tmbc = m1.add_instruction(migraphx::make_op("contiguous"), d1_tmb);
        auto q2      = add_quantize_op(m1, "quantizelinear", t2, scale, zero);
        auto d2      = add_quantize_op(m1, "dequantizelinear", q2, scale, zero);
        auto dot_1   = m1.add_instruction(migraphx::make_op("dot"), d1_tmbc, d2);
        auto q3      = add_quantize_op(m1, "quantizelinear", dot_1, scale, zero);
        auto d3      = add_quantize_op(m1, "dequantizelinear", q3, scale, zero);
        auto dot_2   = m1.add_instruction(migraphx::make_op("dot"), d3, d1);
        auto add     = m1.add_instruction(migraphx::make_op("add"), {dot_2, d1});
        m1.add_return({add});
    }

    migraphx::module m2;
    {
        auto t1    = m2.add_parameter("t1", sh1);
        auto t2    = m2.add_parameter("t2", sh2);
        auto scale = m2.add_literal(0.5f);
        auto zero  = m2.add_literal(std::int8_t{0});

        auto q1 = add_quantize_op(m2, "quantizelinear", t1, scale, zero);
        auto q1_t =
            m2.add_instruction(migraphx::make_op("transpose", {{"permutation", {1, 0}}}), q1);
        auto q1_tmb =
            m2.add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {32, 32}}}), q1_t);
        auto q1_tmbc     = m2.add_instruction(migraphx::make_op("contiguous"), q1_tmb);
        auto q2          = add_quantize_op(m2, "quantizelinear", t2, scale, zero);
        auto dot_1       = m2.add_instruction(migraphx::make_op("quant_dot"), q1_tmbc, q2);
        auto out_scale   = add_scale_mul(m2, scale, scale, 1, 1, dot_1->get_shape().lens());
        auto d3          = add_quantize_op(m2, "dequantizelinear", dot_1, out_scale);
        auto d3_q        = add_quantize_op(m2, "quantizelinear", d3, scale, zero);
        auto dot_2       = m2.add_instruction(migraphx::make_op("quant_dot"), d3_q, q1);
        auto out_scale_2 = add_scale_mul(m2, scale, scale, 1, 1, dot_2->get_shape().lens());
        auto d4          = add_quantize_op(m2, "dequantizelinear", dot_2, out_scale_2);
        auto add         = m2.add_instruction(migraphx::make_op("add"), d4, t1);
        m2.add_return({add});
    }
    run_pass(m1);
    EXPECT(m1 == m2);
}

turneram's avatar
turneram committed
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
TEST_CASE(conv)
{
    migraphx::shape s4{migraphx::shape::int8_type, {1280, 320, 1, 1}};
    migraphx::shape s7{migraphx::shape::float_type, {1, 320, 7, 7}};

    migraphx::module m1;
    {
        auto input   = m1.add_parameter("input", s7);
        auto weights = m1.add_parameter("weights", s4);
        auto scale   = m1.add_literal(0.5f);
        auto zero    = m1.add_literal(std::int8_t{0});

        auto d1 = add_quantize_op(m1, "dequantizelinear", weights, scale, zero);
        auto q1 = add_quantize_op(m1, "quantizelinear", input, scale, zero);
        auto d5 = add_quantize_op(m1, "dequantizelinear", q1, scale, zero);
        auto c1 = m1.add_instruction(migraphx::make_op("convolution",
                                                       {{"padding", {0, 0, 0, 0}},
                                                        {"stride", {1, 1}},
                                                        {"dilation", {1, 1}},
                                                        {"group", 1},
                                                        {"padding_mode", 0}}),
                                     d5,
                                     d1);
        m1.add_return({c1});
    }

    migraphx::module m2;
    {
        auto input   = m2.add_parameter("input", s7);
        auto weights = m2.add_parameter("weights", s4);
        auto scale   = m2.add_literal(0.5f);
        auto zero    = m2.add_literal(std::int8_t{0});

619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
        auto q1        = add_quantize_op(m2, "quantizelinear", input, scale, zero);
        auto c1        = m2.add_instruction(migraphx::make_op("quant_convolution",
                                                              {{"padding", {0, 0, 0, 0}},
                                                               {"stride", {1, 1}},
                                                               {"dilation", {1, 1}},
                                                               {"group", 1},
                                                               {"padding_mode", 0}}),
                                     q1,
                                     weights);
        auto out_scale = add_scale_mul(m2, scale, scale, 1, 1, c1->get_shape().lens());
        auto d6        = add_quantize_op(m2, "dequantizelinear", c1, out_scale);
        m2.add_return({d6});
    }

    run_pass(m1);
    EXPECT(m1 == m2);
}

TEST_CASE(conv_multi_scale)
{
    migraphx::shape s4{migraphx::shape::int8_type, {1280, 320, 1, 1}};
    migraphx::shape s7{migraphx::shape::float_type, {1, 320, 7, 7}};
    migraphx::shape s8{migraphx::shape::float_type, {1280}};

    migraphx::module m1;
    {
        auto input     = m1.add_parameter("input", s7);
        auto weights   = m1.add_parameter("weights", s4);
        auto w_scale   = m1.add_literal(migraphx::generate_literal(s8, 0));
        auto inp_scale = m1.add_literal(0.5f);
        auto zero      = m1.add_literal(std::int8_t{0});

        auto d1 = add_quantize_op(m1, "dequantizelinear", weights, w_scale, zero, 0);
        auto q1 = add_quantize_op(m1, "quantizelinear", input, inp_scale, zero);
        auto d5 = add_quantize_op(m1, "dequantizelinear", q1, inp_scale, zero);
        auto c1 = m1.add_instruction(migraphx::make_op("convolution",
turneram's avatar
turneram committed
655
656
657
658
659
                                                       {{"padding", {0, 0, 0, 0}},
                                                        {"stride", {1, 1}},
                                                        {"dilation", {1, 1}},
                                                        {"group", 1},
                                                        {"padding_mode", 0}}),
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
                                     d5,
                                     d1);
        m1.add_return({c1});
    }

    migraphx::module m2;
    {
        auto input     = m2.add_parameter("input", s7);
        auto weights   = m2.add_parameter("weights", s4);
        auto w_scale   = m2.add_literal(migraphx::generate_literal(s8, 0));
        auto inp_scale = m2.add_literal(0.5f);
        auto zero      = m2.add_literal(std::int8_t{0});

        auto q_inp     = add_quantize_op(m2, "quantizelinear", input, inp_scale, zero);
        auto c1        = m2.add_instruction(migraphx::make_op("quant_convolution",
                                                              {{"padding", {0, 0, 0, 0}},
                                                               {"stride", {1, 1}},
                                                               {"dilation", {1, 1}},
                                                               {"group", 1},
                                                               {"padding_mode", 0}}),
                                     q_inp,
turneram's avatar
turneram committed
681
                                     weights);
682
683
684
        auto out_scale = add_scale_mul(m2, inp_scale, w_scale, 1, 1, c1->get_shape().lens());
        auto d1        = add_quantize_op(m2, "dequantizelinear", c1, out_scale);
        m2.add_return({d1});
turneram's avatar
turneram committed
685
686
687
688
689
690
    }

    run_pass(m1);
    EXPECT(m1 == m2);
}

691
TEST_CASE(conv_multi_scale_unsupported_axis)
turneram's avatar
turneram committed
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
{
    migraphx::shape s4{migraphx::shape::int8_type, {1280, 320, 1, 1}};
    migraphx::shape s7{migraphx::shape::float_type, {1, 320, 7, 7}};
    migraphx::shape s8{migraphx::shape::float_type, {320}};

    migraphx::module m1;
    {
        auto input   = m1.add_parameter("input", s7);
        auto weights = m1.add_parameter("weights", s4);
        auto scale   = m1.add_literal(migraphx::generate_literal(s8, 0));
        auto zero    = m1.add_literal(std::int8_t{0});

        auto d1 = add_quantize_op(m1, "dequantizelinear", weights, scale, zero);
        auto q1 = add_quantize_op(m1, "quantizelinear", input, scale, zero);
        auto d5 = add_quantize_op(m1, "dequantizelinear", q1, scale, zero);
        auto c1 = m1.add_instruction(migraphx::make_op("convolution",
                                                       {{"padding", {0, 0, 0, 0}},
                                                        {"stride", {1, 1}},
                                                        {"dilation", {1, 1}},
                                                        {"group", 1},
                                                        {"padding_mode", 0}}),
                                     d5,
                                     d1);
        m1.add_return({c1});
    }

    migraphx::module m2;
    {
        auto input   = m2.add_parameter("input", s7);
        auto weights = m2.add_parameter("weights", s4);
        auto scale   = m2.add_literal(migraphx::generate_literal(s8, 0));
        auto zero    = m2.add_literal(std::int8_t{0});

        auto d1 = add_quantize_op(m2, "dequantizelinear", weights, scale, zero);
        auto c1 = m2.add_instruction(migraphx::make_op("convolution",
                                                       {{"padding", {0, 0, 0, 0}},
                                                        {"stride", {1, 1}},
                                                        {"dilation", {1, 1}},
                                                        {"group", 1},
                                                        {"padding_mode", 0}}),
                                     input,
                                     d1);
        m2.add_return({c1});
    }

    run_pass(m1);
    EXPECT(m1 == m2);
}

TEST_CASE(conv_bias_add)
{
    migraphx::shape s4{migraphx::shape::int8_type, {1280, 320, 1, 1}};
    migraphx::shape s6{migraphx::shape::int32_type, {1280}};
    migraphx::shape s7{migraphx::shape::float_type, {1, 320, 7, 7}};

    migraphx::module m1;
    {
        auto input   = m1.add_parameter("input", s7);
        auto weights = m1.add_parameter("weights", s4);
        auto bias    = m1.add_parameter("bias", s6);
        auto scale   = m1.add_literal(0.5f);
        auto zero    = m1.add_literal(std::int8_t{0});
754
        auto zero32  = m1.add_literal(std::int32_t{0});
turneram's avatar
turneram committed
755
756

        auto d1 = add_quantize_op(m1, "dequantizelinear", weights, scale, zero);
757
        auto d2 = add_quantize_op(m1, "dequantizelinear", bias, scale, zero32);
turneram's avatar
turneram committed
758
759
760
761
762
763
764
765
766
767
768
        auto q1 = add_quantize_op(m1, "quantizelinear", input, scale, zero);
        auto d5 = add_quantize_op(m1, "dequantizelinear", q1, scale, zero);
        auto c1 = m1.add_instruction(migraphx::make_op("convolution",
                                                       {{"padding", {0, 0, 0, 0}},
                                                        {"stride", {1, 1}},
                                                        {"dilation", {1, 1}},
                                                        {"group", 1},
                                                        {"padding_mode", 0}}),
                                     d5,
                                     d1);
        auto b1 = m1.add_instruction(
769
            migraphx::make_op("broadcast", {{"axis", 1}, {"out_lens", {1, 1280, 7, 7}}}), d2);
turneram's avatar
turneram committed
770
771
772
773
774
775
776
777
778
779
780
        auto a1 = m1.add_instruction(migraphx::make_op("add"), c1, b1);
        m1.add_return({a1});
    }

    migraphx::module m2;
    {
        auto input   = m2.add_parameter("input", s7);
        auto weights = m2.add_parameter("weights", s4);
        auto bias    = m2.add_parameter("bias", s6);
        auto scale   = m2.add_literal(0.5f);
        auto zero    = m2.add_literal(std::int8_t{0});
781
        auto zero32  = m2.add_literal(std::int32_t{0});
turneram's avatar
turneram committed
782

783
784
785
786
787
788
789
790
        auto d2        = add_quantize_op(m2, "dequantizelinear", bias, scale, zero32);
        auto q1        = add_quantize_op(m2, "quantizelinear", input, scale, zero);
        auto c1        = m2.add_instruction(migraphx::make_op("quant_convolution",
                                                              {{"padding", {0, 0, 0, 0}},
                                                               {"stride", {1, 1}},
                                                               {"dilation", {1, 1}},
                                                               {"group", 1},
                                                               {"padding_mode", 0}}),
turneram's avatar
turneram committed
791
792
                                     q1,
                                     weights);
793
794
795
        auto out_scale = add_scale_mul(m2, scale, scale, 1, 1, c1->get_shape().lens());
        auto d6        = add_quantize_op(m2, "dequantizelinear", c1, out_scale);
        auto b1        = m2.add_instruction(
796
            migraphx::make_op("broadcast", {{"axis", 1}, {"out_lens", {1, 1280, 7, 7}}}), d2);
turneram's avatar
turneram committed
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
        auto a1 = m2.add_instruction(migraphx::make_op("add"), d6, b1);
        m2.add_return({a1});
    }

    run_pass(m1);
    EXPECT(m1 == m2);
}

TEST_CASE(conv_pooling_dot)
{
    migraphx::shape s2{migraphx::shape::int8_type, {1280, 1000}};
    migraphx::shape s3{migraphx::shape::int8_type, {1000}};
    migraphx::shape s4{migraphx::shape::int8_type, {1280, 320, 1, 1}};
    migraphx::shape s6{migraphx::shape::int32_type, {1280}};
    migraphx::shape s7{migraphx::shape::float_type, {1, 320, 7, 7}};

    migraphx::module m1;
    {
        auto db      = m1.add_parameter("db", s2); // dot input b
        auto ab      = m1.add_parameter("ab", s3); // add input b
        auto weights = m1.add_parameter("weights", s4);
        auto bias    = m1.add_parameter("bias", s6);
        auto input   = m1.add_parameter("input", s7);
        auto scale   = m1.add_literal(0.5f);
        auto zero    = m1.add_literal(std::int8_t{0});
822
        auto zero32  = m1.add_literal(std::int32_t{0});
turneram's avatar
turneram committed
823
824

        auto d1  = add_quantize_op(m1, "dequantizelinear", weights, scale, zero);
825
        auto d2  = add_quantize_op(m1, "dequantizelinear", bias, scale, zero32);
turneram's avatar
turneram committed
826
827
828
829
830
        auto d3  = add_quantize_op(m1, "dequantizelinear", ab, scale, zero);
        auto d4  = add_quantize_op(m1, "dequantizelinear", db, scale, zero);
        auto q1  = add_quantize_op(m1, "quantizelinear", input, scale, zero);
        auto d5  = add_quantize_op(m1, "dequantizelinear", q1, scale, zero);
        auto c1  = m1.add_instruction(migraphx::make_op("convolution",
831
832
833
834
835
                                                        {{"padding", {0, 0, 0, 0}},
                                                         {"stride", {1, 1}},
                                                         {"dilation", {1, 1}},
                                                         {"group", 1},
                                                         {"padding_mode", 0}}),
turneram's avatar
turneram committed
836
837
838
                                     d5,
                                     d1);
        auto bc1 = m1.add_instruction(
839
            migraphx::make_op("broadcast", {{"axis", 1}, {"out_lens", {1, 1280, 7, 7}}}), d2);
840
841
842
843
844
845
846
        auto a1 = m1.add_instruction(migraphx::make_op("add"), c1, bc1);
        auto ap =
            m1.add_instruction(migraphx::make_op("pooling",
                                                 {{"mode", migraphx::op::pooling_mode::average},
                                                  {"padding", {0, 0, 0, 0}},
                                                  {"stride", {1, 1}},
                                                  {"lengths", {7, 7}},
847
                                                  {"dilations", {1, 1}},
848
849
                                                  {"ceil_mode", 0}}),
                               a1);
850
851
852
853
854
855
        auto fl  = m1.add_instruction(migraphx::make_op("flatten", {{"axis", 1}}), ap);
        auto q4  = add_quantize_op(m1, "quantizelinear", fl, scale, zero);
        auto d8  = add_quantize_op(m1, "dequantizelinear", q4, scale, zero);
        auto dot = m1.add_instruction(migraphx::make_op("dot"), d8, d4);
        auto q5  = add_quantize_op(m1, "quantizelinear", dot, scale, zero);
        auto d9  = add_quantize_op(m1, "dequantizelinear", q5, scale, zero);
856
857
        auto mb1 =
            m1.add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {1, 1000}}}), d3);
turneram's avatar
turneram committed
858
859
860
861
862
863
864
865
866
867
868
869
870
        auto a2 = m1.add_instruction(migraphx::make_op("add"), d9, mb1);
        m1.add_return({a2});
    }

    migraphx::module m2;
    {
        auto db      = m2.add_parameter("db", s2); // dot input b
        auto ab      = m2.add_parameter("ab", s3); // add input b
        auto weights = m2.add_parameter("weights", s4);
        auto bias    = m2.add_parameter("bias", s6);
        auto input   = m2.add_parameter("input", s7);
        auto scale   = m2.add_literal(0.5f);
        auto zero    = m2.add_literal(std::int8_t{0});
871
        auto zero32  = m2.add_literal(std::int32_t{0});
turneram's avatar
turneram committed
872

873
874
875
876
877
878
879
880
881
        auto d2         = add_quantize_op(m2, "dequantizelinear", bias, scale, zero32);
        auto d3         = add_quantize_op(m2, "dequantizelinear", ab, scale, zero);
        auto q1         = add_quantize_op(m2, "quantizelinear", input, scale, zero);
        auto c1         = m2.add_instruction(migraphx::make_op("quant_convolution",
                                                               {{"padding", {0, 0, 0, 0}},
                                                                {"stride", {1, 1}},
                                                                {"dilation", {1, 1}},
                                                                {"group", 1},
                                                                {"padding_mode", 0}}),
turneram's avatar
turneram committed
882
883
                                     q1,
                                     weights);
884
885
886
        auto out_scale1 = add_scale_mul(m2, scale, scale, 1, 1, c1->get_shape().lens());
        auto d5         = add_quantize_op(m2, "dequantizelinear", c1, out_scale1);
        auto bc1        = m2.add_instruction(
887
            migraphx::make_op("broadcast", {{"axis", 1}, {"out_lens", {1, 1280, 7, 7}}}), d2);
888
889
890
891
892
893
894
        auto a1 = m2.add_instruction(migraphx::make_op("add"), d5, bc1);
        auto ap =
            m2.add_instruction(migraphx::make_op("pooling",
                                                 {{"mode", migraphx::op::pooling_mode::average},
                                                  {"padding", {0, 0, 0, 0}},
                                                  {"stride", {1, 1}},
                                                  {"lengths", {7, 7}},
895
                                                  {"dilations", {1, 1}},
896
897
                                                  {"ceil_mode", 0}}),
                               a1);
898
899
900
901
902
        auto fl         = m2.add_instruction(migraphx::make_op("flatten", {{"axis", 1}}), ap);
        auto q4         = add_quantize_op(m2, "quantizelinear", fl, scale, zero);
        auto dot        = m2.add_instruction(migraphx::make_op("quant_dot"), q4, db);
        auto out_scale2 = add_scale_mul(m2, scale, scale, 1, 0, dot->get_shape().lens());
        auto d9         = add_quantize_op(m2, "dequantizelinear", dot, out_scale2);
903
904
        auto mb1 =
            m2.add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {1, 1000}}}), d3);
turneram's avatar
turneram committed
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
        auto a2 = m2.add_instruction(migraphx::make_op("add"), d9, mb1);
        m2.add_return({a2});
    }

    run_pass(m1);
    EXPECT(m1 == m2);
}

TEST_CASE(mobilenet_snippet)
{
    migraphx::shape s2{migraphx::shape::int8_type, {1280, 1000}};
    migraphx::shape s3{migraphx::shape::int8_type, {1000}};
    migraphx::shape s4{migraphx::shape::int8_type, {1280, 320, 1, 1}};
    migraphx::shape s6{migraphx::shape::int32_type, {1280}};
    migraphx::shape s7{migraphx::shape::float_type, {1, 320, 7, 7}};

    auto create_module = [&]() {
        migraphx::module mm;
        auto db      = mm.add_parameter("db", s2); // dot input b
        auto ab      = mm.add_parameter("ab", s3); // add input b
        auto weights = mm.add_parameter("weights", s4);
        auto bias    = mm.add_parameter("bias", s6);
        auto input   = mm.add_parameter("input", s7);
        auto scale   = mm.add_literal(0.5f);
        auto zero    = mm.add_literal(std::int8_t{0});
930
        auto zero32  = mm.add_literal(std::int32_t{0});
turneram's avatar
turneram committed
931
932

        auto d1  = add_quantize_op(mm, "dequantizelinear", weights, scale, zero);
933
        auto d2  = add_quantize_op(mm, "dequantizelinear", bias, scale, zero32);
turneram's avatar
turneram committed
934
935
936
937
938
        auto d3  = add_quantize_op(mm, "dequantizelinear", ab, scale, zero);
        auto d4  = add_quantize_op(mm, "dequantizelinear", db, scale, zero);
        auto q1  = add_quantize_op(mm, "quantizelinear", input, scale, zero);
        auto d5  = add_quantize_op(mm, "dequantizelinear", q1, scale, zero);
        auto c1  = mm.add_instruction(migraphx::make_op("convolution",
939
940
941
942
943
                                                        {{"padding", {0, 0, 0, 0}},
                                                         {"stride", {1, 1}},
                                                         {"dilation", {1, 1}},
                                                         {"group", 1},
                                                         {"padding_mode", 0}}),
turneram's avatar
turneram committed
944
945
946
                                     d5,
                                     d1);
        auto bc1 = mm.add_instruction(
947
            migraphx::make_op("broadcast", {{"axis", 1}, {"out_lens", {1, 1280, 7, 7}}}), d2);
948
949
950
951
952
953
954
955
956
        auto a1 = mm.add_instruction(migraphx::make_op("add"), c1, bc1);
        auto q2 = add_quantize_op(mm, "quantizelinear", a1, scale, zero);
        auto d6 = add_quantize_op(mm, "dequantizelinear", q2, scale, zero);
        auto ap =
            mm.add_instruction(migraphx::make_op("pooling",
                                                 {{"mode", migraphx::op::pooling_mode::average},
                                                  {"padding", {0, 0, 0, 0}},
                                                  {"stride", {1, 1}},
                                                  {"lengths", {7, 7}},
957
                                                  {"dilations", {1, 1}},
958
959
                                                  {"ceil_mode", 0}}),
                               d6);
960
961
962
963
964
965
966
967
        auto q3  = add_quantize_op(mm, "quantizelinear", ap, scale, zero);
        auto d7  = add_quantize_op(mm, "dequantizelinear", q3, scale, zero);
        auto rs  = mm.add_instruction(migraphx::make_op("reshape", {{"dims", {1, -1}}}), d7);
        auto q4  = add_quantize_op(mm, "quantizelinear", rs, scale, zero);
        auto d8  = add_quantize_op(mm, "dequantizelinear", q4, scale, zero);
        auto dot = mm.add_instruction(migraphx::make_op("dot"), d8, d4);
        auto q5  = add_quantize_op(mm, "quantizelinear", dot, scale, zero);
        auto d9  = add_quantize_op(mm, "dequantizelinear", q5, scale, zero);
968
969
        auto mb1 =
            mm.add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {1, 1000}}}), d3);
turneram's avatar
turneram committed
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
        auto a2 = mm.add_instruction(migraphx::make_op("add"), d9, mb1);
        mm.add_return({a2});

        return mm;
    };

    auto mod1 = create_module();
    auto mod2 = create_module();
    run_pass(mod2);

    auto match_qdq = migraphx::match::name("dequantizelinear")(
        migraphx::match::arg(0)(migraphx::match::name("quantizelinear")));
    auto ins1 = migraphx::match::find_match(mod1, match_qdq);
    auto ins2 = migraphx::match::find_match(mod2, match_qdq);

    EXPECT((ins1.result != mod1.end()) and (ins2.result == mod2.end()));
    EXPECT(any_of(mod1, &is_convolution));
    EXPECT(none_of(mod2, &is_convolution));
    EXPECT(any_of(mod1, &is_dot));
    EXPECT(none_of(mod2, &is_dot));
}

TEST_CASE(conv_correctness)
{
    migraphx::shape si{migraphx::shape::float_type, {2, 3, 4, 4}};
    migraphx::shape sw{migraphx::shape::int8_type, {2, 3, 3, 3}};

    migraphx::program p1;
    {
        auto* m1     = p1.get_main_module();
        auto input   = m1->add_parameter("input", si);
        auto weights = m1->add_parameter("weights", sw);
        auto scale_i = m1->add_literal(0.5f);
        auto scale_w = m1->add_literal(0.1f);
        auto zero    = m1->add_literal(std::int8_t{0});

        auto d1 = add_quantize_op(*m1, "dequantizelinear", weights, scale_w, zero);
        auto q1 = add_quantize_op(*m1, "quantizelinear", input, scale_i, zero);
        auto d5 = add_quantize_op(*m1, "dequantizelinear", q1, scale_i, zero);
        auto c1 = m1->add_instruction(migraphx::make_op("convolution",
                                                        {{"padding", {0, 0, 0, 0}},
                                                         {"stride", {1, 1}},
                                                         {"dilation", {1, 1}},
                                                         {"group", 1},
                                                         {"padding_mode", 0}}),
                                      d5,
                                      d1);
        m1->add_return({c1});
        run_pass(*m1);
    }

    migraphx::program p2;
    {
        auto* m2     = p2.get_main_module();
        auto input   = m2->add_parameter("input", si);
        auto weights = m2->add_parameter("weights", sw);
        auto scale   = m2->add_literal(0.1f);
        auto zero    = m2->add_literal(std::int8_t{0});

        auto d1 = add_quantize_op(*m2, "dequantizelinear", weights, scale, zero);
        auto c1 = m2->add_instruction(migraphx::make_op("convolution",
                                                        {{"padding", {0, 0, 0, 0}},
                                                         {"stride", {1, 1}},
                                                         {"dilation", {1, 1}},
                                                         {"group", 1},
                                                         {"padding_mode", 0}}),
                                      input,
                                      d1);
        m2->add_return({c1});
    }

    std::vector<float> iv(si.elements(), 4);
    auto input = migraphx::argument(si, iv.data());
    std::vector<float> wv(sw.elements(), 10);
    auto weights = migraphx::argument(sw, wv.data());
1045
1046
    p1.compile(migraphx::target(migraphx::make_target("ref")));
    p2.compile(migraphx::target(migraphx::make_target("ref")));
turneram's avatar
turneram committed
1047
1048
1049
1050
1051
1052
1053

    auto result1 = p1.eval({{"input", input}, {"weights", weights}}).back();
    std::vector<float> rv1(16);
    result1.visit([&](auto output) { rv1.assign(output.begin(), output.end()); });
    auto result2 = p2.eval({{"input", input}, {"weights", weights}}).back();
    std::vector<float> rv2(16);
    result2.visit([&](auto output) { rv2.assign(output.begin(), output.end()); });
1054
    EXPECT(migraphx::verify::verify_rms_range(rv1, rv2));
turneram's avatar
turneram committed
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
}

TEST_CASE(dot_correctness)
{
    migraphx::shape sh1{migraphx::shape::float_type, {10, 4}};
    migraphx::shape sh2{migraphx::shape::float_type, {4, 12}};
    migraphx::shape sh3{migraphx::shape::float_type, {10, 12}};

    migraphx::program p1;
    {
        auto* m1     = p1.get_main_module();
        auto a       = m1->add_parameter("a", sh1);
        auto b       = m1->add_parameter("b", sh2);
        auto scale_a = m1->add_literal(0.4f);
        auto scale_b = m1->add_literal(0.5f);
        auto zero    = m1->add_literal(std::int8_t{0});

1072
1073
1074
1075
1076
        auto q1  = add_quantize_op(*m1, "quantizelinear", a, scale_a, zero);
        auto d1  = add_quantize_op(*m1, "dequantizelinear", q1, scale_a, zero);
        auto q2  = add_quantize_op(*m1, "quantizelinear", b, scale_b, zero);
        auto d2  = add_quantize_op(*m1, "dequantizelinear", q2, scale_b, zero);
        auto dot = m1->add_instruction(migraphx::make_op("dot"), d1, d2);
turneram's avatar
turneram committed
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
        m1->add_return({dot});

        run_pass(*m1);
    }

    migraphx::program p2;
    {
        auto* m2 = p2.get_main_module();
        auto a   = m2->add_parameter("a", sh1);
        auto b   = m2->add_parameter("b", sh2);
1087
        auto dot = m2->add_instruction(migraphx::make_op("dot"), a, b);
turneram's avatar
turneram committed
1088
1089
1090
1091
1092
1093
1094
        m2->add_return({dot});
    }

    std::vector<float> av(sh1.elements(), 10);
    auto a = migraphx::argument(sh1, av.data());
    std::vector<float> bv(sh2.elements(), 10);
    auto b = migraphx::argument(sh2, bv.data());
1095
1096
    p1.compile(migraphx::target(migraphx::make_target("ref")));
    p2.compile(migraphx::target(migraphx::make_target("ref")));
turneram's avatar
turneram committed
1097
1098
1099
1100
1101
1102
1103

    auto result1 = p1.eval({{"a", a}, {"b", b}}).back();
    std::vector<float> rv1(sh3.elements());
    result1.visit([&](auto output) { rv1.assign(output.begin(), output.end()); });
    auto result2 = p2.eval({{"a", a}, {"b", b}}).back();
    std::vector<float> rv2(sh3.elements());
    result2.visit([&](auto output) { rv2.assign(output.begin(), output.end()); });
1104
    EXPECT(migraphx::verify::verify_rms_range(rv1, rv2));
turneram's avatar
turneram committed
1105
1106
1107
}

int main(int argc, const char* argv[]) { test::run(argc, argv); }