backend.py 4.64 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# -------------------------------------------------------------------------
# Copyright (c) Advanced Micro Devices. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
"""
Implements ONNX's backend API.
"""
import sys
if sys.version_info < (3, 0):
    sys.exit()

from onnx import ModelProto
from onnx.checker import check_model
from onnx.backend.base import Backend
import migraphx
from onnx_migraphx.backend_rep import MIGraphXBackendRep


def get_device():
    return ("CPU", "GPU")


class MIGraphXBackend(Backend):
    _device = "GPU"
    _input_names = []
26
    _prog_string = ""
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

    @classmethod
    def set_device(cls, device):
        cls._device = device
    """
    Implements
    `ONNX's backend API <https://github.com/onnx/onnx/blob/master/docs/ImplementingAnOnnxBackend.md>`_
    with *ONNX Runtime*.
    The backend is mostly used when you need to switch between
    multiple runtimes with the same API.
    `Importing models from ONNX to Caffe2 <https://github.com/onnx/tutorials/blob/master/tutorials/OnnxCaffe2Import.ipynb>`_
    shows how to use *caffe2* as a backend for a converted model.
    Note: This is not the official Python API.
    """  # noqa: E501

42
43
44
45
    @classmethod
    def get_program(cls):
        return cls._prog_string

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    @classmethod
    def is_compatible(cls, model, device=None, **kwargs):
        """
        Return whether the model is compatible with the backend.

        :param model: unused
        :param device: None to use the default device or a string (ex: `'CPU'`)
        :return: boolean
        """
        device = cls._device
        return cls.supports_device(device)

    @classmethod
    def supports_device(cls, device):
        """
        Check whether the backend is compiled with particular device support.
        In particular it's used in the testing suite.
        """
        return device in get_device()

    @classmethod
    def prepare(cls, model, device=None, **kwargs):
        """
        Load the model and creates a :class:`migraphx.program`
        ready to be used as a backend.

        :param model: ModelProto (returned by `onnx.load`),
            string for a filename or bytes for a serialized model
        :param device: requested device for the computation,
            None means the default one which depends on
            the compilation settings
        :param kwargs: see :class:`onnxruntime.SessionOptions`
        :return: :class:`migraphx.program`
        """
        if isinstance(model, MIGraphXBackendRep):
            return model
        elif isinstance(model, migraphx.program):
            return MIGraphXBackendRep(model, cls._input_names)
        elif isinstance(model, (str, bytes)):
            if device is not None and not cls.supports_device(device):
                raise RuntimeError(
                    "Incompatible device expected '{0}', got '{1}'".format(
                        device, get_device()))
            inf = migraphx.parse_onnx_buffer(model)
90
            cls._prog_string = str("\nProgram =\n{}".format(inf))
91
92
93
            device = cls._device
            cls._input_names = inf.get_parameter_names()
            inf.compile(migraphx.get_target(device.lower()))
94
95
96
            cls._prog_string = cls._prog_string + str(
                "\nCompiled program =\n{}".format(inf))

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
            return cls.prepare(inf, device, **kwargs)
        else:
            # type: ModelProto
            check_model(model)
            bin = model.SerializeToString()
            return cls.prepare(bin, device, **kwargs)

    @classmethod
    def run_model(cls, model, inputs, device=None, **kwargs):
        """
        Compute the prediction.

        :param model: :class:`migraphx.program` returned
            by function *prepare*
        :param inputs: inputs
        :param device: requested device for the computation,
            None means the default one which depends on
            the compilation settings
        :param kwargs: see :class:`migraphx.program`
        :return: predictions
        """
        rep = cls.prepare(model, device, **kwargs)
        return rep.run(inputs, **kwargs)

    @classmethod
    def run_node(cls, node, inputs, device=None, outputs_info=None, **kwargs):
        '''
        This method is not implemented as it is much more efficient
        to run a whole model than every node independently.
        '''
        raise NotImplementedError(
            "It is much more efficient to run a whole model than every node independently."
        )


is_compatible = MIGraphXBackend.is_compatible
prepare = MIGraphXBackend.prepare
run = MIGraphXBackend.run_model
supports_device = MIGraphXBackend.supports_device