fuse_mlir.cpp 5.54 KB
Newer Older
Paul Fultz II's avatar
Paul Fultz II committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <migraphx/gpu/fuse_mlir.hpp>
#include <migraphx/gpu/mlir.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/register_op.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct module;

namespace gpu {

#ifdef MIGRAPHX_MLIR
struct mlir_conv
{
    operation op = make_op("convolution");

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return pack(f(self.op, "op"));
    }

    std::string name() const { return "gpu::mlir_conv"; }
    shape compute_shape(std::vector<shape> inputs, const std::vector<module_ref>& mods) const
    {
        check_shapes{inputs, *this}.standard();
        if(mods.size() != 1)
            MIGRAPHX_THROW("should have one submodule.");
        if(inputs.size() < 2)
            MIGRAPHX_THROW("should have at least two inputs.");
        auto n = inputs.size();
        return op.compute_shape({inputs[n - 2], inputs[n - 1]});
    }
};
MIGRAPHX_REGISTER_OP(mlir_conv);

namespace {
Paul's avatar
Paul committed
64
65
66

MIGRAPHX_PRED_MATCHER(is_mlir_conv, instruction_ref ins)
{
Paul's avatar
Format  
Paul committed
67
    if(ins->name() != "convolution")
Paul's avatar
Paul committed
68
        return false;
Paul's avatar
Format  
Paul committed
69
    value v    = ins->get_operator().to_value();
Paul's avatar
Paul committed
70
    auto group = v.at("group").to<int>();
Paul's avatar
Format  
Paul committed
71
    if(group != 1)
Paul's avatar
Paul committed
72
73
74
75
        return false;
    return true;
}

Paul Fultz II's avatar
Paul Fultz II committed
76
77
78
79
80
81
struct find_conv_pointwise
{
    // Find a convolution followed by a pointwise operation.
    auto matcher() const
    {
        auto convolution =
Paul's avatar
Paul committed
82
            match::skip(match::name("contiguous"))(is_mlir_conv().bind("convolution"));
Paul Fultz II's avatar
Paul Fultz II committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
        return match::name("pointwise")(match::any_of[match::inputs()](convolution.bind("x")));
    }

    void apply(module_pass_manager& mpm, const match::matcher_result& r) const
    {
        auto ins      = r.result;
        auto conv_ins = r.instructions["convolution"];
        auto x_ins    = r.instructions["x"]; // input after contiguous
        auto* pm      = ins->module_inputs().front();
        auto names    = pm->get_parameter_names();
        // Whitelist pointwise operators
        if(std::any_of(pm->begin(), pm->end(), [](const auto& i) {
               return not contains({"@literal", "@param", "@return", "convolution", "add", "relu"},
                                   i.name());
           }))
            return;
        // Only fuse with fp32 for now
        if(std::any_of(ins->inputs().begin(), ins->inputs().end(), [&](auto i) {
               return i->get_shape().type() != shape::type_t::float_type;
           }))
            return;
        std::sort(names.begin(), names.end());
        module_ref mm = mpm.create_module("mlir_" + pm->name());
        mm->set_bypass();
        std::unordered_map<instruction_ref, instruction_ref> param_map;
        auto x    = mm->add_parameter("x" + std::to_string(names.size()),
                                   conv_ins->inputs().at(0)->get_shape());
        auto w    = mm->add_parameter("x" + std::to_string(names.size() + 1),
                                   conv_ins->inputs().at(1)->get_shape());
        auto conv = mm->add_instruction(conv_ins->get_operator(), {x, w});
        std::transform(names.begin(),
                       names.end(),
                       ins->inputs().begin(),
                       std::inserter(param_map, param_map.end()),
                       [&](auto name, auto input) {
                           if(input == x_ins)
                               return std::make_pair(pm->get_parameter(name), conv);
                           return std::make_pair(pm->get_parameter(name),
                                                 mm->add_parameter(name, input->get_shape()));
                       });
        mm->add_return(mm->insert_instructions(mm->end(), pm, param_map));

        std::vector<instruction_ref> inputs;
        std::copy_if(ins->inputs().begin(),
                     ins->inputs().end(),
                     std::back_inserter(inputs),
                     [&](auto input) { return input != conv_ins; });
        inputs.insert(inputs.end(), conv_ins->inputs().begin(), conv_ins->inputs().end());
        mpm.get_module().replace_instruction(
            ins, mlir_conv{conv_ins->get_operator()}, inputs, {mm});
    }
};
} // namespace

#endif

void fuse_mlir::apply(module_pass_manager& mpm) const
{
#ifdef MIGRAPHX_MLIR
    match::find_matches(mpm, find_conv_pointwise{});
#else
    (void)mpm;
#endif
}

} // namespace gpu

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx