pooling.cpp 9.11 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <migraphx/onnx/pooling.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/padding.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/ranges.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {

value handle_pooling_values(const op_desc& opd,
                            onnx_parser::node_info info,
                            const shape& in_shape,
                            value values)
{
    auto kdims = in_shape.ndim() - 2;
    if(starts_with(opd.onnx_name, "Global") or starts_with(opd.onnx_name, "QLinearGlobal"))
    {
        // if spatial dimensions are dynamic use dyn_global flag
        if(in_shape.dynamic() and std::any_of(in_shape.dyn_dims().cbegin() + 2,
                                              in_shape.dyn_dims().cend(),
                                              [](auto dd) { return not dd.is_fixed(); }))
        {
            values["dyn_global"] = true;
            values["lengths"]    = std::vector<size_t>();
        }
        else
        {
            // works with static and fixed dynamic shape
            auto m_lens       = in_shape.max_lens();
            values["lengths"] = std::vector<size_t>(m_lens.begin() + 2, m_lens.end());
        }
    }

    if(contains(info.attributes, "ceil_mode"))
    {
        values["ceil_mode"] = static_cast<bool>(info.attributes.at("ceil_mode").i());
    }

    if(contains(info.attributes, "strides"))
    {
        values["stride"].clear();
        copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
        check_attr_sizes(kdims, values["stride"].size(), "PARSE_POOLING: inconsistent strides");
    }

    if(contains(info.attributes, "kernel_shape"))
    {
        values["lengths"].clear();
        copy(info.attributes["kernel_shape"].ints(), std::back_inserter(values["lengths"]));
        check_attr_sizes(kdims, values["lengths"].size(), "PARSE_POOLING: inconsistent lengths");
    }

    if(contains(info.attributes, "dilations"))
    {
        values["dilations"].clear();
        copy(info.attributes["dilations"].ints(), std::back_inserter(values["dilations"]));
        check_attr_sizes(
            kdims, values["dilations"].size(), "PARSE_POOLING: inconsistent dilations");
    }

    // lp_order attribute
    if(contains(info.attributes, "p"))
    {
        values["lp_order"] = info.attributes.at("p").i();
    }

    // ensure pads available only when auto_pad is "NOT_SET"
    check_padding_mode(info, "POOLING");

    return values;
}

instruction_ref add_pooling_op(const op_desc& opd, onnx_parser::node_info info, instruction_ref l0)
{
    std::string mode                                                 = opd.op_name;
    const std::unordered_map<std::string, op::pooling_mode> mode_map = {
        {"max", op::pooling_mode::max},
        {"average", op::pooling_mode::average},
        {"lpnorm", op::pooling_mode::lpnorm}};
    if(not contains(mode_map, mode))
    {
        MIGRAPHX_THROW(
            "PARSE_POOLING: onnx pooling mode must be [\"max\", \"average\", \"lpnorm\"]");
    }
    operation op  = make_op("pooling", {{"mode", mode_map.at(mode)}});
    value values  = op.to_value();
    auto in_shape = l0->get_shape();
    assert(in_shape.ndim() > 2);
    auto kdims = in_shape.ndim() - 2;

    values = handle_pooling_values(opd, info, in_shape, values);

    // count include padding, if count include pad is 1, we always use
    // explicit pad
    int count_include_pad = 0;
    if(contains(info.attributes, "count_include_pad"))
    {
        if(in_shape.dynamic())
        {
            MIGRAPHX_THROW("PARSE_POOLING: count_include_pad attribute is not supported for "
                           "dynamic input shape");
        }
        count_include_pad = info.attributes.at("count_include_pad").i();
    }

    std::vector<int64_t> paddings;
    float pad_val = ((mode == "max") ? std::numeric_limits<float>::lowest() : 0.0f);

    if(contains(info.attributes, "pads"))
    {
        values["padding"].clear();
        copy(info.attributes["pads"].ints(), std::back_inserter(paddings));
        check_attr_sizes(
            kdims, paddings.size() / 2, "PARSE_POOLING: inconsistent explicit paddings");
    }

    if(paddings.size() != 2 * kdims)
    {
        paddings.resize(kdims * 2);
        std::fill_n(paddings.begin(), 2 * kdims, 0);
    }

    if(values["padding"].size() != kdims)
    {
        values["padding"].resize(kdims);
        std::fill_n(values["padding"].begin(), kdims, 0);
    }

    if(values["stride"].size() != kdims)
    {
        values["stride"].resize(kdims);
        std::fill_n(values["stride"].begin(), kdims, 1);
    }

    if(values["dilations"].size() != kdims)
    {
        values["dilations"].resize(kdims);
        std::fill_n(values["dilations"].begin(), kdims, 1);
    }

    // used to calculate the supposed output shape
    std::vector<int64_t> orig_padding = paddings;

    // TODO:  add parsing for dilations
    if(contains(info.attributes, "auto_pad") and
       to_upper(info.attributes["auto_pad"].s()) != "NOTSET")
    {
        auto auto_pad = to_upper(info.attributes["auto_pad"].s());
        // don't use the given padding sizes, if any
        // values["padding"].clear();
        if(in_shape.dynamic())
        {
            // set padding_mode to trigger auto padding at runtime
            bool is_same_upper     = (auto_pad.find("SAME_UPPER") != std::string::npos);
            values["padding_mode"] = is_same_upper ? to_value(op::padding_mode_t::same_upper)
                                                   : to_value(op::padding_mode_t::same_lower);
        }
        else
        {
            // Calculate auto padding
            // dilations (argument 4) not supported; default to all 1's
            cal_auto_padding_size(info,
                                  values,
                                  values["lengths"].to_vector<std::size_t>(),
                                  values["dilations"].to_vector<std::size_t>(),
                                  in_shape.lens(),
                                  paddings);
            values["padding"] = paddings;
            // default padding_mode indicates that padding sizes are not calculated dynamically
            values["padding_mode"] = migraphx::op::padding_mode_t::default_;
        }
    }

    std::vector<int64_t> slice_start;
    std::vector<int64_t> slice_end;
    tune_padding_size(values, paddings, count_include_pad, slice_start);

    if(not slice_start.empty())
    {
        if(in_shape.dynamic())
        {
            MIGRAPHX_THROW(
                "PARSE_POOLING: asymmetric padding not supported for dynamic input shape");
        }
        // calculate expected output shape
        orig_padding.insert(orig_padding.begin() + kdims, 2, 0);
        orig_padding.insert(orig_padding.begin(), 2, 0);
        op::pad pad{orig_padding, 0.0f};
        shape padded_shape = pad.compute_shape({l0->get_shape()});

        // make an op just to get its output shape
        auto out_lens = make_op("pooling", values).compute_shape({padded_shape}).lens();
        // compute slice_end information
        slice_end.resize(slice_start.size());
        std::transform(out_lens.begin() + 2,
                       out_lens.end(),
                       slice_start.begin(),
                       slice_end.begin(),
                       [](auto i, auto j) { return i + j; });
    }
    values["padding"] = std::vector<size_t>(paddings.begin(), paddings.end());

    check_asym_padding(info, l0, paddings, values, count_include_pad, pad_val);
    op.from_value(values);

    auto l1 = info.add_instruction(op, l0);
    if(not slice_start.empty())
    {
        std::vector<int64_t> axes(kdims);
        std::iota(axes.begin(), axes.end(), 2);
        l1 = info.add_instruction(
            make_op("slice", {{"axes", axes}, {"starts", slice_start}, {"ends", slice_end}}), l1);
    }

    return l1;
}

} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx