mlir.cpp 5.11 KB
Newer Older
1
#include <migraphx/gpu/mlir.hpp>
Paul's avatar
Paul committed
2
3
#include <migraphx/gpu/target.hpp>
#include <migraphx/ref/target.hpp>
4
#include <migraphx/module.hpp>
Paul's avatar
Paul committed
5
#include <migraphx/program.hpp>
6
7
8
#include <migraphx/make_op.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/stringutils.hpp>
Paul's avatar
Paul committed
9
10
#include <migraphx/generate.hpp>
#include <migraphx/verify_args.hpp>
11
12
13
14
15
16
17
18
#include <test.hpp>

using migraphx::trim;

std::string encode(std::string s)
{
    std::stringstream ss;
    bool prespace = false;
Paul's avatar
Paul committed
19
    for(auto c : s)
20
    {
Paul's avatar
Paul committed
21
        if(std::isspace(c))
22
        {
Paul's avatar
Paul committed
23
            if(not prespace)
24
25
26
                ss << "  ";
            prespace = true;
        }
Paul's avatar
Paul committed
27
        else if(std::isprint(c))
28
29
30
31
32
33
34
35
        {
            ss << c;
            prespace = false;
        }
    }
    return migraphx::trim(ss.str());
}

Paul's avatar
Paul committed
36
37
38
migraphx::program create_program_from_mlir(const migraphx::module& mmlir)
{
    migraphx::program p;
Paul's avatar
Paul committed
39
    auto* mm   = p.get_main_module();
Paul's avatar
Paul committed
40
41
42
43
44
45
46
    auto names = mmlir.get_parameter_names();
    std::vector<migraphx::instruction_ref> inputs;
    std::transform(names.begin(), names.end(), std::back_inserter(inputs), [&](const auto& name) {
        return mm->add_parameter(name, mmlir.get_parameter_shape(name));
    });
    inputs.push_back(mm->add_parameter("output", mmlir.get_output_shapes().front()));
    migraphx::gpu::insert_mlir(*mm, mm->end(), mmlir, inputs);
Paul's avatar
Paul committed
47
    std::cout << p << std::endl;
Paul's avatar
Paul committed
48
49
50
51
52
53
54
55
56
    return p;
}

migraphx::parameter_map generate_params(const migraphx::program& p)
{
    migraphx::parameter_map m;
    std::size_t i = 0;
    for(auto&& x : p.get_parameter_shapes())
    {
Paul's avatar
Updates  
Paul committed
57
        // m[x.first] = migraphx::fill_argument(x.second, 1);
Paul's avatar
Paul committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
        m[x.first] = migraphx::generate_argument(x.second, i++);
    }
    return m;
}

migraphx::argument run_gpu(migraphx::program p, const migraphx::parameter_map& inputs)
{
    migraphx::gpu::target t;
    p.compile(t);
    migraphx::parameter_map m;
    for(auto&& input : inputs)
    {
        m[input.first] = t.copy_to(input.second);
    }
    for(auto&& x : p.get_parameter_shapes())
    {
        if(m.count(x.first) == 0)
        {
            m[x.first] = t.allocate(x.second);
        }
    }
    return t.copy_from(p.eval(m).front());
}

migraphx::argument run_ref(migraphx::program p, const migraphx::parameter_map& inputs)
{
    p.compile(migraphx::ref::target{});
    return p.eval(inputs).front();
}

bool verify_mlir(const migraphx::module& mmlir)
{
    migraphx::program ref;
    ref.get_main_module()->insert_module_instructions(ref.get_main_module()->end(), &mmlir);

    auto inputs = generate_params(ref);

    auto mlir = create_program_from_mlir(mmlir);
    return migraphx::verify_args("mlir", run_ref(ref, inputs), run_gpu(mlir, inputs));
}

99
100
101
102
103
TEST_CASE(conv)
{
    const std::string mlir_output = R"__migraphx__(
module  {
  func @main(%arg0: tensor<1x8x4x4xf32>, %arg1: tensor<2x8x3x3xf32>) -> tensor<1x2x2x2xf32> {
104
105
    %0 = migraphx.convolution(%arg0, %arg1) {dilation = [1, 1], group = 1 : i64, padding = [0, 0, 0, 0], padding_mode = 0 : i64, stride = [1, 1]} : (tensor<1x8x4x4xf32>, tensor<2x8x3x3xf32>) -> tensor<1x2x2x2xf32>
    return %0 : tensor<1x2x2x2xf32>
106
107
108
109
  }
}
)__migraphx__";
    migraphx::module m;
Paul's avatar
Format  
Paul committed
110
111
    auto x    = m.add_parameter("x", {migraphx::shape::float_type, {1, 8, 4, 4}});
    auto w    = m.add_parameter("w", {migraphx::shape::float_type, {2, 8, 3, 3}});
Paul's avatar
Paul committed
112
113
    auto conv = m.add_instruction(migraphx::make_op("convolution", {{"padding", {0, 0, 0, 0}}}), x, w);
    // auto conv = m.add_instruction(migraphx::make_op("convolution"), x, w);
Paul's avatar
Paul committed
114
    m.add_return({conv});
115
    auto s = migraphx::gpu::dump_mlir(m);
Paul's avatar
Paul committed
116
    // Skip test if MLIR is not enabled
Paul's avatar
Format  
Paul committed
117
    if(s.empty())
Paul's avatar
Paul committed
118
        return;
Paul's avatar
Paul committed
119
    std::cout << s << std::endl;
Paul's avatar
Paul committed
120
    CHECK(encode(s) == encode(mlir_output));
Paul's avatar
Paul committed
121
    EXPECT(verify_mlir(m));
Paul's avatar
Paul committed
122
123
124
125
126
127
128
}

TEST_CASE(conv_add_relu)
{
    const std::string mlir_output = R"__migraphx__(
module  {
  func @main(%arg0: tensor<1x8x4x4xf32>, %arg1: tensor<2x8x3x3xf32>, %arg2: tensor<1x2x2x2xf32>) -> tensor<1x2x2x2xf32> {
129
    %0 = migraphx.convolution(%arg0, %arg1) {dilation = [1, 1], group = 1 : i64, padding = [0, 0, 0, 0], padding_mode = 0 : i64, stride = [1, 1]} : (tensor<1x8x4x4xf32>, tensor<2x8x3x3xf32>) -> tensor<1x2x2x2xf32>
Paul's avatar
Paul committed
130
131
    %1 = migraphx.add(%0, %arg2) : (tensor<1x2x2x2xf32>, tensor<1x2x2x2xf32>) -> tensor<1x2x2x2xf32>
    %2 = migraphx.relu(%1) : (tensor<1x2x2x2xf32>) -> tensor<1x2x2x2xf32>
132
    return %2 : tensor<1x2x2x2xf32>
Paul's avatar
Paul committed
133
134
135
136
  }
}
)__migraphx__";
    migraphx::module m;
Paul's avatar
Format  
Paul committed
137
138
139
    auto x    = m.add_parameter("x", {migraphx::shape::float_type, {1, 8, 4, 4}});
    auto w    = m.add_parameter("w", {migraphx::shape::float_type, {2, 8, 3, 3}});
    auto b    = m.add_parameter("b", {migraphx::shape::float_type, {1, 2, 2, 2}});
Paul's avatar
Paul committed
140
    auto conv = m.add_instruction(migraphx::make_op("convolution"), x, w);
Paul's avatar
Format  
Paul committed
141
    auto add  = m.add_instruction(migraphx::make_op("add"), conv, b);
Paul's avatar
Paul committed
142
143
    auto relu = m.add_instruction(migraphx::make_op("relu"), add);
    m.add_return({relu});
Paul's avatar
Paul committed
144
145
    auto s = migraphx::gpu::dump_mlir(m);
    // Skip test if MLIR is not enabled
Paul's avatar
Format  
Paul committed
146
    if(s.empty())
Paul's avatar
Paul committed
147
        return;
Paul's avatar
Paul committed
148
    std::cout << s << std::endl;
Paul's avatar
Paul committed
149
    CHECK(encode(s) == encode(mlir_output));
Paul's avatar
Paul committed
150
    EXPECT(verify_mlir(m));
151
152
153
}

int main(int argc, const char* argv[]) { test::run(argc, argv); }