"...targets/git@developer.sourcefind.cn:gaoqiong/migraphx.git" did not exist on "581d31b02fd1b4f6e2fe670c9249f50ce5ce052a"
quantization.cpp 6.82 KB
Newer Older
Shucai Xiao's avatar
Shucai Xiao committed
1
#include <migraphx/quantization.hpp>
2
3
4
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/iterator_for.hpp>
5
#include <migraphx/op/convert.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
6
7
8
#include <migraphx/op/dot.hpp>
#include <migraphx/op/mul.hpp>
#include <migraphx/op/add.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
9
#include <migraphx/op/quant_dot.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
10
#include <migraphx/op/capture.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
11
#include <migraphx/op/convolution.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
12
#include <migraphx/op/quant_convolution.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
13
#include <migraphx/op/multibroadcast.hpp>
14
#include <migraphx/stringutils.hpp>
15
#include <migraphx/ranges.hpp>
16
#include <utility>
17
18
#include <iomanip>
#include <fstream>
19
20
21
22

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

Shucai Xiao's avatar
Shucai Xiao committed
23
24
25
26
27
28
instruction_ref insert_quant_ins(program& prog,
                                 instruction_ref& ins,
                                 shape::type_t type,
                                 std::unordered_map<instruction_ref, instruction_ref>& map_ins,
                                 float scale = 1.0f,
                                 float shift = 0.0f)
29
{
Shucai Xiao's avatar
Shucai Xiao committed
30
    if(map_ins.count(ins) > 0)
31
    {
Shucai Xiao's avatar
Shucai Xiao committed
32
33
34
35
36
37
        return map_ins[ins];
    }

    if(ins->name() == "undefined")
    {
        return ins;
38
39
    }

40
41
42
43
44
    if(scale < 0.0f)
    {
        MIGRAPHX_THROW("INSERT_QUANT_INS: scale less than 0");
    }

Shucai Xiao's avatar
Shucai Xiao committed
45
    assert(ins->get_shape().type() == shape::float_type ||
Shucai Xiao's avatar
Shucai Xiao committed
46
47
48
49
50
           ins->get_shape().type() == shape::double_type ||
           ins->get_shape().type() == shape::int32_type);
    instruction_ref quant_ins{};
    quant_ins    = prog.insert_instruction(std::next(ins), op::convert{type, scale, shift}, ins);
    map_ins[ins] = quant_ins;
51

Shucai Xiao's avatar
Shucai Xiao committed
52
    return quant_ins;
53
54
}

Shucai Xiao's avatar
Shucai Xiao committed
55
56
57
58
59
// This function is to convert any instructions specified in the input
// from double or float to float16 by inserting a convert operator.
// For the conversion, there could be cases of overflowing, but it
// is very rare in the area of deeping learning, so we just do a
// truncate of the input to get the fp16.
60
void quantize(program& prog, const std::vector<std::string>& ins_names)
61
{
62
    std::unordered_map<instruction_ref, instruction_ref> map_fp16;
Shucai Xiao's avatar
Shucai Xiao committed
63
    for(auto ins : iterator_for(prog))
64
    {
65
        // all indicates every instruction is converted
Shucai Xiao's avatar
Shucai Xiao committed
66
        if((not contains(ins_names, "all")) and (not contains(ins_names, ins->name())))
67
68
69
        {
            continue;
        }
70

71
        shape::type_t orig_type = ins->get_shape().type();
Shucai Xiao's avatar
Shucai Xiao committed
72
        // process all inputs, if input is a fp32 or fp64, convert it
73
        // to a fp16 by adding a convert operator.
74
        auto inputs = ins->inputs();
75
        std::vector<instruction_ref> converted_inputs;
Shucai Xiao's avatar
Shucai Xiao committed
76
        for(auto input : inputs)
77
78
        {
            auto s = input->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
79
            if(s.type() == shape::float_type || s.type() == shape::double_type)
80
            {
81
                // if the input is a convert operator, uses its input
82
83
                // as its current input
                instruction_ref input_fp16{};
84
                if(input->name() == "convert")
85
86
87
88
89
                {
                    input_fp16 = input->inputs().front();
                }
                else
                {
Shucai Xiao's avatar
Shucai Xiao committed
90
                    input_fp16 = insert_quant_ins(prog, input, shape::half_type, map_fp16);
91
                }
92
                converted_inputs.push_back(input_fp16);
93
            }
94
95
96
97
98
99
            else
            {
                converted_inputs.push_back(input);
            }
        }

100
        // no change for the input, go to the next instruction
Shucai Xiao's avatar
Shucai Xiao committed
101
        if(inputs == converted_inputs)
102
        {
103
            continue;
Shucai Xiao's avatar
Shucai Xiao committed
104
105
106
107
108
109
        }

        auto op        = ins->get_operator();
        auto ins_shape = compute_shape(op, converted_inputs);
        if(ins_shape.type() != orig_type)
        {
Shucai Xiao's avatar
Shucai Xiao committed
110
111
112
113
114
            // check the dead code case to avoid assert
            bool output_empty = ins->outputs().empty();
            auto ins_orig_type =
                prog.insert_instruction(std::next(ins), op::convert{orig_type}, ins);
            if(!output_empty)
115
            {
Shucai Xiao's avatar
Shucai Xiao committed
116
                prog.replace_instruction(ins, ins_orig_type);
117
            }
118
        }
Shucai Xiao's avatar
Shucai Xiao committed
119
120

        prog.replace_instruction(ins, op, converted_inputs);
121
122
123
    }
}

Shucai Xiao's avatar
Shucai Xiao committed
124
void quantize(program& prog) { quantize(prog, {"all"}); }
Shucai Xiao's avatar
Shucai Xiao committed
125

Shucai Xiao's avatar
Shucai Xiao committed
126
127
// For the input of each input argument, we need to insert a
// capture operator to compute the scale and shift
Shucai Xiao's avatar
Shucai Xiao committed
128
129
void capture_arguments(program& prog,
                       const std::vector<std::string>& ins_names,
Shucai Xiao's avatar
Shucai Xiao committed
130
                       std::function<void(std::size_t, std::vector<argument>)> func)
Shucai Xiao's avatar
Shucai Xiao committed
131
{
132

Shucai Xiao's avatar
Shucai Xiao committed
133
    size_t num_quant_params = 0;
Shucai Xiao's avatar
Shucai Xiao committed
134
    // the int8 quantization only support dot and convolution
135
    std::vector<std::string> op_names = {"dot", "convolution"};
Shucai Xiao's avatar
Shucai Xiao committed
136
137
138
    if(!std::all_of(ins_names.begin(), ins_names.end(), [&](auto name) {
           return std::find(op_names.begin(), op_names.end(), name) != op_names.end();
       }))
Shucai Xiao's avatar
Shucai Xiao committed
139
140
141
142
143
144
145
    {
        MIGRAPHX_THROW("CAPTURE_ARGUMENTS: input operator is not supported");
    }

    std::unordered_map<instruction_ref, instruction_ref> ins_map;
    for(auto ins : iterator_for(prog))
    {
Shucai Xiao's avatar
Shucai Xiao committed
146
        if(not contains(ins_names, ins->name()))
Shucai Xiao's avatar
Shucai Xiao committed
147
148
149
150
151
152
        {
            continue;
        }

        auto inputs = ins->inputs();
        std::vector<instruction_ref> new_args;
Shucai Xiao's avatar
Shucai Xiao committed
153
        for(auto input : inputs)
Shucai Xiao's avatar
Shucai Xiao committed
154
155
        {
            instruction_ref new_ins{};
Shucai Xiao's avatar
Shucai Xiao committed
156
            if(ins_map.count(input) > 0)
Shucai Xiao's avatar
Shucai Xiao committed
157
158
159
160
161
            {
                new_ins = ins_map[input];
            }
            else
            {
Shucai Xiao's avatar
Shucai Xiao committed
162
                new_ins = prog.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
163
                    std::next(input), op::capture{num_quant_params++, func}, input);
Shucai Xiao's avatar
Shucai Xiao committed
164
165
166
167
168
169
                ins_map[input] = new_ins;
            }
            new_args.push_back(new_ins);
        }
        instruction::replace(ins, ins->get_operator(), ins->get_shape(), new_args);
    }
Shucai Xiao's avatar
Shucai Xiao committed
170
171

    // set one pair of parameter for each argument
172
    prog.int8_quant_params->resize(num_quant_params, std::make_pair(-1.0f, -1.0f));
Shucai Xiao's avatar
Shucai Xiao committed
173
174
175
176
}

void capture_arguments(program& prog, const std::vector<std::string>& ins_names)
{
Shucai Xiao's avatar
Shucai Xiao committed
177
    auto calc_quant_params = [&](std::size_t ins_index, std::vector<migraphx::argument> args) {
178
179
180
181
182
183
        std::pair<float, float> param_pair{1.0f, 0.0f};

        // scale and shift is need for only int8 type, and we do not
        // consider shift, so set shift to 0
        std::vector<float> vec_val;
        args.front().visit([&](auto output) { vec_val.assign(output.begin(), output.end()); });
Shucai Xiao's avatar
Shucai Xiao committed
184
185
186
        auto max_val = *std::max_element(vec_val.begin(), vec_val.end());
        auto min_val = *std::min_element(vec_val.begin(), vec_val.end());
        auto max_abs = std::max(std::fabs(max_val), std::fabs(min_val));
187

Shucai Xiao's avatar
Shucai Xiao committed
188
        param_pair.first                     = 127.0f / max_abs;
189
        (*prog.int8_quant_params)[ins_index] = param_pair;
190
191
    };

Shucai Xiao's avatar
Shucai Xiao committed
192
    capture_arguments(prog, ins_names, calc_quant_params);
Shucai Xiao's avatar
Shucai Xiao committed
193
194
}

195
196
197
198
199
200
void capture_arguments(program& prog)
{
    std::vector<std::string> ins_names = {"dot", "convolution"};
    capture_arguments(prog, ins_names);
}

201
202
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx