parse_qlinearmatmul.cpp 7.83 KB
Newer Older
Lakhinder Walia's avatar
Lakhinder Walia committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/broadcast_qdq.hpp>
#include <migraphx/instruction.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {

/*
 *********************************************************************************
 *  Reference: see QLinearMatMul in                                              *
 *  https://onnx.ai/onnx/operators/onnx__QLinearMatMul.html                      *
 *********************************************************************************

Matrix product that behaves like numpy.matmul:

https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matmul.html. It consumes two
quantized input tensors, their scales and zero points, scale and zero point of output, and computes
the quantized output. The quantization formula is y = saturate((x / y_scale) + y_zero_point). For (x
/ y_scale), it is rounding to nearest ties to even. Refer to https://en.wikipedia.org/wiki/Rounding
for details. Scale and zero point must have same shape. They must be either scalar (per tensor) or
N-D tensor (per row for ‘a’ and per column for ‘b’). Scalar refers to per tensor quantization
whereas N-D refers to per row or per column quantization. If the input is 2D of shape [M, K] then
zero point and scale tensor may be an M element vector [v_1, v_2, …, v_M] for per row quantization
and K element vector of shape [v_1, v_2, …, v_K] for per column quantization. If the input is N-D
tensor with shape [D1, D2, M, K] then zero point and scale tensor may have shape [D1, D2, M, 1] for
per row quantization and shape [D1, D2, 1, K] for per column quantization. Production must never
overflow, and accumulation may overflow if and only if in 32 bits.

Inputs
a (heterogeneous) - T1: N-dimensional quantized matrix a

a_scale (heterogeneous) - tensor(float): scale of quantized input a

a_zero_point (heterogeneous) - T1: zero point of quantized input a

b (heterogeneous) - T2: N-dimensional quantized matrix b

b_scale (heterogeneous) - tensor(float): scale of quantized input b

b_zero_point (heterogeneous) - T2: zero point of quantized input b

y_scale (heterogeneous) - tensor(float): scale of quantized output y

y_zero_point (heterogeneous) - T3: zero point of quantized output y

Outputs
y (heterogeneous) - T3: Quantized matrix multiply results from a * b

Type Constraints
T1 in ( tensor(int8), tensor(uint8) ): Constrain input a and its zero point data type to 8-bit
integer tensor.

T2 in ( tensor(int8), tensor(uint8) ): Constrain input b and its zero point data type to 8-bit
integer tensor.

T3 in ( tensor(int8), tensor(uint8) ): Constrain output y and its zero point data type to 8-bit
integer tensor.

*/

struct parse_qlinearmatmul : op_parser<parse_qlinearmatmul>
{
    std::vector<op_desc> operators() const { return {{"QLinearMatMul"}}; }

    // basic type checking for QLinearMatMul Operator

    void check_inputs(const std::vector<instruction_ref>& args) const
    {
        if(args.size() < 8)
            MIGRAPHX_THROW("QLINEARMATMUL: missing inputs");

        const auto& in_a = args[0];
        const auto& in_b = args[3];

        auto sh_a = in_a->get_shape();
        auto sh_b = in_b->get_shape();

        auto type_a = sh_a.type();
        auto type_b = sh_b.type();
        if(type_a != migraphx::shape::int8_type and type_a != migraphx::shape::uint8_type)
            MIGRAPHX_THROW("QLINEARMATMUL: unsupported input type");
        if(type_b != migraphx::shape::int8_type and type_b != migraphx::shape::uint8_type)
            MIGRAPHX_THROW("QLINEARMATMUL: unsupported input type");

        auto lens_a = sh_a.lens();
        auto lens_b = sh_b.lens();

        size_t dim_a = lens_a.size();
        size_t dim_b = lens_b.size();

        if(dim_a == 0 or dim_b == 0)
            MIGRAPHX_THROW("QLINEARMATMUL: empty input");

        // broadcast supported if either is 1-D -- the other can be a 2-D tensor.
        // if it is 1-D, just prepend/append that lens and check further constraints..
        if(dim_a == 1)
        {
            lens_a.insert(lens_a.begin(), 1);
            dim_a++;
        }
        if(dim_b == 1)
        {
            lens_b.push_back(1);
            dim_b++;
        }

        // 2-D or higher-order mat mul
        if(dim_a != dim_b or *lens_a.rbegin() != *(lens_b.rbegin() + 1) or
           not std::equal(lens_a.rbegin() + 2, lens_a.rend(), lens_b.rbegin() + 2, lens_b.rend()))
            MIGRAPHX_THROW("QLINEARMATMUL: mismatched input dimensions");

        if(migraphx::any_of({args[1], args[2], args[4], args[5]},
                            [](auto arg) { return not arg->get_shape().scalar(); }))
            MIGRAPHX_THROW("QLINEARMATMUL: unsupported row/column quantization");
    }

    instruction_ref parse(const op_desc& /* opd */,
                          const onnx_parser& /*parser*/,
                          const onnx_parser::node_info& info,
                          const std::vector<instruction_ref>& args) const
    {
        check_inputs(args);

        // A
        const auto& in_a         = args[0];
        const auto& in_scale_a   = args[1];
        const auto& in_zero_pt_a = args[2];
        auto dquant_a = bcast_qdq_instr("dequantizelinear", in_a, in_scale_a, in_zero_pt_a, info);

        // B
        const auto& in_b         = args[3];
        const auto& in_scale_b   = args[4];
        const auto& in_zero_pt_b = args[5];
        auto dquant_b = bcast_qdq_instr("dequantizelinear", in_b, in_scale_b, in_zero_pt_b, info);

        bool is_a_prepended = false;
        bool is_b_appended  = false;

        // un-squeeze either tensor if 1-D.
        if(in_a->get_shape().ndim() == 1)
        {
            is_a_prepended = true;
            dquant_a       = info.add_instruction(make_op("unsqueeze", {{"axes", {0}}}), dquant_a);
        }
        if(in_b->get_shape().ndim() == 1)
        {
            is_b_appended = true;
            dquant_b      = info.add_instruction(make_op("unsqueeze", {{"axes", {1}}}), dquant_b);
        }

        // Y = A * B
        auto out_y = info.add_instruction(migraphx::make_op("dot"), dquant_a, dquant_b);

        // squeeze just once if necessary.. not twice.
        if(is_a_prepended)
            out_y = info.add_instruction(make_op("squeeze", {{"axes", {0}}}), out_y);
        else if(is_b_appended)
            out_y = info.add_instruction(make_op("squeeze", {{"axes", {1}}}), out_y);

        const auto& scale_y   = args[6];
        const auto& zero_pt_y = args[7];

        return bcast_qdq_instr("quantizelinear", out_y, scale_y, zero_pt_y, info);
    }
};

} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx