verify.hpp 3.89 KB
Newer Older
Paul's avatar
Paul committed
1
2
#ifndef MIGRAPH_GUARD_VERIFY_HPP
#define MIGRAPH_GUARD_VERIFY_HPP
Paul's avatar
Paul committed
3
4
5
6
7
8
9

#include <algorithm>
#include <cmath>
#include <functional>
#include <iostream>
#include <numeric>

Paul's avatar
Paul committed
10
11
#include <migraph/float_equal.hpp>

Paul's avatar
Paul committed
12
namespace migraph {
Paul's avatar
Paul committed
13
14
15
16
17
18
19
20

// Compute the value of a range
template <class R>
using range_value = std::decay_t<decltype(*std::declval<R>().begin())>;

struct sum_fn
{
    template <class T, class U>
Paul's avatar
Paul committed
21
22
23
24
    auto operator()(T x, U y) const
    {
        return x + y;
    }
Paul's avatar
Paul committed
25
26
27
28
29
30
31
32
33
34
35
36
};
static constexpr sum_fn sum{};

struct max_fn
{
    template <class T>
    static T id(T x)
    {
        return x;
    }

    template <class T, class U>
Paul's avatar
Paul committed
37
38
39
40
    auto operator()(T x, U y) const
    {
        return x > y ? x : y;
    }
Paul's avatar
Paul committed
41
42
43
44
45
46
47
48
};
static constexpr max_fn max{};

namespace abs_diff_detail {
using std::fabs;
struct fn
{
    template <class T, class U>
Paul's avatar
Paul committed
49
50
51
52
    auto operator()(T x, U y) const
    {
        return fabs(x - y);
    }
Paul's avatar
Paul committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
};

} // namespace abs_diff_detail

static constexpr abs_diff_detail::fn abs_diff{};

struct not_finite_fn
{
    template <class T>
    bool operator()(T x) const
    {
        using std::isfinite;
        return not isfinite(x);
    }
};
static constexpr not_finite_fn not_finite{};

struct compare_mag_fn
{
    template <class T, class U>
    bool operator()(T x, U y) const
    {
        using std::fabs;
        return fabs(x) < fabs(y);
    }
};
static constexpr compare_mag_fn compare_mag{};

struct square_diff_fn
{
    template <class T, class U>
    double operator()(T x, U y) const
    {
        return (x - y) * (x - y);
    }
};
static constexpr square_diff_fn square_diff{};

template <class R1>
bool range_empty(R1&& r1)
{
    return r1.begin() == r1.end();
}

template <class R1>
Paul's avatar
Paul committed
98
99
100
101
auto range_distance(R1&& r1)
{
    return std::distance(r1.begin(), r1.end());
}
Paul's avatar
Paul committed
102
103
104
105

template <class R1>
bool range_zero(R1&& r1)
{
Paul's avatar
Paul committed
106
    return std::all_of(r1.begin(), r1.end(), [](auto x) { return float_equal(x, 0); });
Paul's avatar
Paul committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
}

template <class R1, class R2, class T, class Reducer, class Product>
T range_product(R1&& r1, R2&& r2, T state, Reducer r, Product p)
{
    return std::inner_product(r1.begin(), r1.end(), r2.begin(), state, r, p);
}

template <class R1, class R2, class Compare>
std::size_t mismatch_idx(R1&& r1, R2&& r2, Compare compare)
{
    auto p = std::mismatch(r1.begin(), r1.end(), r2.begin(), compare);
    return std::distance(r1.begin(), p.first);
}

template <class R1, class Predicate>
long find_idx(R1&& r1, Predicate p)
{
    auto it = std::find_if(r1.begin(), r1.end(), p);
    if(it == r1.end())
        return -1;
    else
        return std::distance(r1.begin(), it);
}

template <class R1, class R2>
double max_diff(R1&& r1, R2&& r2)
{
    return range_product(r1, r2, 0.0, max, abs_diff);
}

template <class R1, class R2, class T>
std::size_t mismatch_diff(R1&& r1, R2&& r2, T diff)
{
Paul's avatar
Paul committed
141
142
143
144
    return mismatch_idx(r1, r2, [&](auto x, auto y) {
        auto d = abs_diff(x, y);
        return !(d > diff && d < diff);
    });
Paul's avatar
Paul committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
}

template <class R1, class R2>
double rms_range(R1&& r1, R2&& r2)
{
    std::size_t n = range_distance(r1);
    if(n == range_distance(r2))
    {
        double square_difference = range_product(r1, r2, 0.0, sum_fn{}, square_diff);
        double mag1              = *std::max_element(r1.begin(), r1.end(), compare_mag);
        double mag2              = *std::max_element(r2.begin(), r2.end(), compare_mag);
        double mag =
            std::max({std::fabs(mag1), std::fabs(mag2), std::numeric_limits<double>::min()});
        return std::sqrt(square_difference) / (std::sqrt(n) * mag);
    }
    else
        return std::numeric_limits<range_value<R1>>::max();
}

Paul's avatar
Paul committed
164
template <class R1, class R2>
Paul's avatar
Paul committed
165
bool verify_range(R1&& r1, R2&& r2, double tolerance = 80, double* out_error = nullptr)
Paul's avatar
Paul committed
166
167
168
{
    double threshold = std::numeric_limits<range_value<R1>>::epsilon() * tolerance;
    auto error       = rms_range(r1, r2);
Paul's avatar
Paul committed
169
170
    if(out_error != nullptr)
        *out_error = error;
Paul's avatar
Paul committed
171
172
    return error <= threshold;
}
Paul's avatar
Paul committed
173
} // namespace migraph
Paul's avatar
Paul committed
174
#endif