schedule_model.cpp 3.76 KB
Newer Older
Paul's avatar
Paul committed
1
2
#include <migraphx/gpu/schedule_model.hpp>
#include <migraphx/gpu/context.hpp>
3
#include <migraphx/register_op.hpp>
Paul's avatar
Paul committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/operation.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {

struct record_event
{
    std::size_t event = 0;
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return pack(f(self.event, "event"));
    }
    std::string name() const { return "gpu::record_event"; }
    shape compute_shape(const std::vector<shape>&) const { return {}; }

    argument compute(context& ctx, const shape&, const std::vector<argument>&) const
    {
        ctx.get_stream().record(ctx.get_event(event));
        return {};
    }

    void finalize(context& ctx, const shape&, const std::vector<shape>&)
    {
        ctx.create_events(event);
    }
};

struct wait_event
{
    std::size_t event = 0;
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return pack(f(self.event, "event"));
    }
    std::string name() const { return "gpu::wait_event"; }
    shape compute_shape(const std::vector<shape>&) const { return {}; }

    argument compute(context& ctx, const shape&, const std::vector<argument>&) const
    {
        ctx.get_stream().wait(ctx.get_event(event));
        return {};
    }
};

struct set_stream
{
    std::size_t stream = 0;
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return pack(f(self.stream, "stream"));
    }
    std::string name() const { return "gpu::set_stream"; }
    shape compute_shape(const std::vector<shape>&) const { return {}; }

    argument compute(context& ctx, const shape&, const std::vector<argument>&) const
    {
        ctx.set_stream(stream);
        return {};
    }
    void finalize(context& ctx, const shape&, const std::vector<shape>&) { ctx.set_stream(stream); }
};

72
73
74
75
MIGRAPHX_REGISTER_OP(record_event)
MIGRAPHX_REGISTER_OP(wait_event)
MIGRAPHX_REGISTER_OP(set_stream)

Paul's avatar
Paul committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
std::size_t schedule_model::concurrency() const { return streams; }
void schedule_model::sched(program& p, instruction_ref ins, std::size_t n) const
{
    auto last_stream = std::find_if(std::make_reverse_iterator(ins),
                                    std::make_reverse_iterator(p.begin()),
                                    [&](auto&& i) { return i.name() == "gpu::set_stream"; });
    if(last_stream != std::make_reverse_iterator(p.begin()))
    {
        auto&& op = any_cast<set_stream>(last_stream->get_operator());
        // If the same stream was set earlier then skip
        if(op.stream == n)
            return;
    }
    p.insert_instruction(ins, set_stream{n});
}

void schedule_model::wait(program& p, instruction_ref ins, std::size_t wait_id) const
{
    p.insert_instruction(ins, wait_event{wait_id});
}
void schedule_model::record(program& p, instruction_ref ins, std::size_t wait_id) const
{
    p.insert_instruction(std::next(ins), record_event{wait_id});
}

static std::unordered_map<std::string, std::size_t> create_weight_map()
{
kahmed10's avatar
kahmed10 committed
103
    return {{"hip::load_literal", 0},
104
            {"hip::hip_allocate_memory", 0},
105
            {"hip::hip_load_memory", 0},
kahmed10's avatar
kahmed10 committed
106
            {"hip::allocate", 0},
107
108
109
110
            {"gpu::convolution", 8},
            {"gpu::conv_bias_relu", 8},
            {"gpu::pooling", 4},
            {"gpu::gemm", 4}};
Paul's avatar
Paul committed
111
112
113
114
115
116
117
118
119
120
121
122
}

static const std::unordered_map<std::string, std::size_t>& weight_map()
{
    static std::unordered_map<std::string, std::size_t> m = create_weight_map();
    return m;
}

std::size_t schedule_model::weight(const operation& op) const
{
    if(weight_map().count(op.name()) == 0)
    {
123
        return 2;
Paul's avatar
Paul committed
124
125
126
127
128
129
130
    }
    return weight_map().at(op.name());
}

} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx