insert_pad.cpp 4.44 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
kahmed10's avatar
kahmed10 committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#include <migraphx/insert_pad.hpp>
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/im2col.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/stringutils.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

static void update_op(const instruction_ref& input, const instruction_ref& ins, module& m)
{
    auto op         = ins->get_operator();
    auto val        = op.to_value();
    auto op_padding = val.at("padding").to_vector<size_t>();

43
44
45
46
47
48
    // skip if shape is dynamic
    if(input->get_shape().dynamic())
    {
        return;
    }

kahmed10's avatar
kahmed10 committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
    auto kdims = input->get_shape().lens().size() - 2;
    if(std::equal(op_padding.begin(),
                  op_padding.begin() + kdims,
                  op_padding.begin() + kdims,
                  op_padding.end()))
        return;

    std::vector<int64_t> padding(input->get_shape().lens().size() * 2, 0);
    std::vector<size_t> pads_l(op_padding.begin(), op_padding.begin() + kdims);
    std::vector<size_t> pads_r(op_padding.begin() + kdims, op_padding.end());
    op_padding = std::vector<size_t>(kdims * 2, 0);
    op.from_value({{"padding", op_padding}});

    std::copy(pads_l.begin(), pads_l.end(), padding.begin() + 2);
    std::copy(pads_r.begin(), pads_r.end(), padding.begin() + kdims + 2 + 2);

    auto pad_op = m.insert_instruction(ins, op::pad{padding}, input);

    auto new_inputs    = ins->inputs();
    new_inputs.front() = pad_op;

    m.replace_instruction(ins, op, new_inputs);
}

static void update_pooling(const instruction_ref& input, const instruction_ref& ins, module& m)
{
    auto op = any_cast<op::pooling>(ins->get_operator());
76
    if(op.mode == op::pooling_mode::average)
kahmed10's avatar
kahmed10 committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    {
        return;
    }
    auto kdims = input->get_shape().lens().size() - 2;
    if(std::equal(op.padding.begin(),
                  op.padding.begin() + kdims,
                  op.padding.begin() + kdims,
                  op.padding.end()))
        return;

    std::vector<int64_t> padding(input->get_shape().lens().size() * 2, 0);
    std::vector<size_t> pads_l(op.padding.begin(), op.padding.begin() + kdims);
    std::vector<size_t> pads_r(op.padding.begin() + kdims, op.padding.end());
    op.padding = std::vector<size_t>(kdims * 2, 0);
    std::copy(pads_l.begin(), pads_l.end(), padding.begin() + 2);
    std::copy(pads_r.begin(), pads_r.end(), padding.begin() + kdims + 2 + 2);

    // maxpool uses lowest value for padding
    float pad_val = std::numeric_limits<float>::lowest();
    auto pad_op   = m.insert_instruction(ins, op::pad{padding, pad_val}, input);

    auto new_inputs    = ins->inputs();
    new_inputs.front() = pad_op;

    m.replace_instruction(ins, op, new_inputs);
}

void insert_pad::apply(module& m) const
{
    for(auto ins : iterator_for(m))
    {
        const std::string& op_name = ins->name();
        if(op_name != "convolution" and op_name != "im2col" and op_name != "pooling")
            continue;
        auto input = ins->inputs().front();
        if(op_name == "convolution" or op_name == "im2col")
            update_op(input, ins, m);
        else if(op_name == "pooling")
            update_pooling(input, ins, m);
    }
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx