"examples/community/pipline_flux_fill_controlnet_Inpaint.py" did not exist on "05b38c3c0da266cc1e5c5cbd768d972fcf25ecf0"
schedule_test.cpp 31.7 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
#include <migraphx/schedule.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/dfor.hpp>
#include <basic_ops.hpp>
#include <test.hpp>

struct unary_op
{
    std::string name() const { return "unary"; }
    migraphx::argument
    compute(migraphx::context&, const migraphx::shape&, std::vector<migraphx::argument> args) const
    {
        if(args.empty())
            return {};
        return args.front();
    }

    migraphx::shape compute_shape(std::vector<migraphx::shape> inputs) const
    {
        if(inputs.empty())
            return {};
        return inputs.front();
    }
    int output_alias(const std::vector<migraphx::shape>&) const { return 0; }
};

struct nary_op
{
    std::string comment = "";
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::pack(f(self.comment, "comment"));
    }
    std::string name() const { return "nary"; }
    migraphx::argument
    compute(migraphx::context&, const migraphx::shape&, std::vector<migraphx::argument> args) const
    {
        if(args.empty())
            return {};
        return args.front();
    }

    migraphx::shape compute_shape(std::vector<migraphx::shape> inputs) const
    {
        if(inputs.empty())
            return {};
        return inputs.front();
    }
};

struct stream_free_op
{
    std::string comment = "";
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::pack(f(self.comment, "comment"));
    }
    std::string name() const { return "stream_free"; }
    migraphx::argument
    compute(migraphx::context&, const migraphx::shape&, std::vector<migraphx::argument> args) const
    {
        if(args.empty())
            return {};
        return args.front();
    }

    migraphx::shape compute_shape(std::vector<migraphx::shape> inputs) const
    {
        if(inputs.empty())
            return {};
        return inputs.front();
    }
};

struct wait_event
{
    std::shared_ptr<std::vector<std::size_t>> wait_for =
        std::make_shared<std::vector<std::size_t>>();
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::pack(f(*self.wait_for, "wait_for"));
    }
    std::string name() const { return "wait_event"; }
    migraphx::shape compute_shape(const std::vector<migraphx::shape>&) const { return {}; }

    migraphx::argument compute(migraphx::context&,
                               const migraphx::shape&,
                               const std::vector<migraphx::argument>&) const
    {
        assert(wait_for != nullptr);
        assert(not wait_for->empty());
        return {};
    }
};

using instruction_map = std::unordered_map<migraphx::instruction_ref, std::size_t>;
using int_map         = std::unordered_map<std::size_t, std::size_t>;
using wait_map =
    std::unordered_map<migraphx::instruction_ref, std::shared_ptr<std::vector<std::size_t>>>;

struct schedule_model_test
{
    std::shared_ptr<instruction_map> ins2stream = std::make_shared<instruction_map>();
    std::shared_ptr<int_map> wait2stream        = std::make_shared<int_map>();
    std::shared_ptr<wait_map> ins2wait_for      = std::make_shared<wait_map>();
    std::size_t concurrency() const { return 4; }
    void sched(migraphx::program&, migraphx::instruction_ref ins, std::size_t n) const
    {
        (*ins2stream)[ins] = n;
    }
    void wait(migraphx::program& p, migraphx::instruction_ref ins, std::size_t wait_id) const
    {
        if(ins2wait_for->count(ins) == 0)
        {
            auto event = wait_event{};
            p.insert_instruction(ins, event);
            (*ins2wait_for)[ins] = event.wait_for;
        }
        (*ins2wait_for)[ins]->push_back(wait2stream->at(wait_id));
    }
    void record(migraphx::program&, migraphx::instruction_ref ins, std::size_t wait_id) const
    {
        (*wait2stream)[wait_id] = ins2stream->at(ins);
    }
    std::size_t weight(const migraphx::operation& op) const
    {
        if(op.name() == "stream_free")
            return 0;
        else if(op.name() == "binary" or op.name() == "unary")
            return 4;
        else
            return 1;
    }
};

bool check_conflicts(migraphx::program& p, migraphx::instruction_ref x, migraphx::instruction_ref y)
{
    for(auto ins : migraphx::iterator_for(p))
    {
        if(ins->name() != "identity")
            continue;
        if(not migraphx::contains(ins->inputs(), x))
            continue;
        if(not migraphx::contains(ins->inputs(), y))
            continue;
        return true;
    }
    return false;
}

struct schedule_target
{
    schedule_model_test model{};
    std::string name() const { return "schedule"; }
    std::vector<migraphx::pass> get_passes(migraphx::context&) const
    {
        return {migraphx::schedule{model}};
    }
    migraphx::context get_context() const { return {}; }

    std::size_t get_stream(migraphx::instruction_ref ins) { return model.ins2stream->at(ins); }

    std::vector<std::size_t> get_streams(std::vector<migraphx::instruction_ref> inss)
    {
        std::vector<std::size_t> result;
        std::transform(inss.begin(), inss.end(), std::back_inserter(result), [&](auto ins) {
            return this->get_stream(ins);
        });
        return result;
    }

    bool has_stream(migraphx::instruction_ref ins) { return model.ins2stream->count(ins) > 0; }

    void check_conflicts(migraphx::program& p,
                         std::vector<std::vector<migraphx::instruction_ref>> conflicts,
                         bool result = true)
    {
        migraphx::dfor(conflicts.size(), conflicts.size())([&](auto i, auto j) {
            if(i == j)
                return;
            for(auto ins1 : conflicts[i])
            {
                for(auto ins2 : conflicts[j])
                {
                    // If both instructions are on the same stream then dont check for a conflict
                    if(this->has_stream(ins1) and this->has_stream(ins2) and
                       this->get_stream(ins1) == this->get_stream(ins2))
                        continue;
                    CHECK(::check_conflicts(p, ins1, ins2) == result);
                }
            }
        });
    }
};

template <class T>
std::vector<T> sorted(std::vector<T> x)
{
    std::sort(x.begin(), x.end());
    return x;
}

template <class T>
std::vector<T> unique(std::vector<T> x)
{
    std::sort(x.begin(), x.end());
    x.erase(std::unique(x.begin(), x.end()), x.end());
    return x;
}

std::vector<std::size_t> get_wait_for(std::vector<std::size_t> wait_for)
{
    return unique(std::move(wait_for));
}

std::vector<std::size_t> get_wait_for(std::size_t wait_on, std::vector<std::size_t> wait_for)
{
    wait_for.erase(std::find(wait_for.begin(), wait_for.end(), wait_on));
    return unique(wait_for);
}

std::vector<std::size_t> get_wait_for(migraphx::instruction_ref ins)
{
    auto wait_ins = std::prev(ins);
    // Skip identity operators
    while(wait_ins->name() == "identity")
        wait_ins = std::prev(wait_ins);
    if(wait_ins->name() != "wait_event")
        return {};
    auto wf = *migraphx::any_cast<wait_event>(wait_ins->get_operator()).wait_for;
    std::sort(wf.begin(), wf.end());
    return wf;
}

template <class T>
std::vector<migraphx::instruction_ref>
chain(migraphx::program& p, std::size_t n, T x, migraphx::instruction_ref input)
{
    std::vector<migraphx::instruction_ref> result;
    for(std::size_t i = 0; i < n; i++)
    {
        result.push_back(p.add_instruction(x, input));
        input = result.back();
    }
    return result;
}
TEST_CASE(single_entry)
{
    schedule_target t{};
    migraphx::program p;
    auto one    = p.add_literal(1);
    auto onep1  = p.add_instruction(unary_op{}, one);
    auto onep2  = p.add_instruction(unary_op{}, one);
    auto binary = p.add_instruction(nary_op{}, onep1, onep2);
    p.compile(t);
    EXPECT(not t.has_stream(one));
    EXPECT(t.get_stream(onep1) != t.get_stream(onep2));
    EXPECT(t.get_stream(binary) == 0);
    EXPECT(get_wait_for(binary) ==
           get_wait_for(t.get_stream(binary), {t.get_stream(onep1), t.get_stream(onep2)}));
    EXPECT(check_conflicts(p, onep1, onep2));
}

TEST_CASE(stream_free)
{
    schedule_target t{};
    migraphx::program p;
    auto one    = p.add_literal(1);
    auto onep1  = p.add_instruction(stream_free_op{}, one);
    auto onep2  = p.add_instruction(stream_free_op{}, one);
    auto binary = p.add_instruction(nary_op{}, onep1, onep2);
    p.compile(t);
    EXPECT(not t.has_stream(one));
    EXPECT(not t.has_stream(onep1));
    EXPECT(not t.has_stream(onep2));
    EXPECT(t.get_stream(binary) == 0);
}

TEST_CASE(zero_record)
{
    schedule_target t{};
    migraphx::program p;
    auto one    = p.add_literal(1);
    auto onep1  = p.add_instruction(unary_op{}, one);
    auto onep2  = p.add_instruction(unary_op{}, one);
    auto onei1  = p.add_instruction(migraphx::op::identity{}, onep1);
    auto onei2  = p.add_instruction(migraphx::op::identity{}, onep2);
    auto binary = p.add_instruction(nary_op{}, onei1, onei2);
    p.compile(t);
    EXPECT(not t.has_stream(one));
    EXPECT(t.get_stream(onep1) != t.get_stream(onep2));
    EXPECT(t.has_stream(binary));
    EXPECT(get_wait_for(binary) ==
           get_wait_for(t.get_stream(binary), {t.get_stream(onep1), t.get_stream(onep2)}));
    EXPECT(check_conflicts(p, onep1, onep2));
    t.check_conflicts(p, {{onep1, onei1}, {onep2, onei2}});
}

TEST_CASE(zero_merge1)
{
    schedule_target t{};
    migraphx::program p;
    auto one    = p.add_literal(1);
    auto onep1  = p.add_instruction(unary_op{}, one);
    auto onep2  = p.add_instruction(unary_op{}, one);
    auto binary = p.add_instruction(migraphx::op::identity{}, onep1, onep2);
    p.compile(t);
    EXPECT(not t.has_stream(one));
    EXPECT(t.get_stream(onep1) != t.get_stream(onep2));
    // No stream assignment
    EXPECT(not t.has_stream(binary));
    // There is no wait
    EXPECT(get_wait_for(binary).empty());
    EXPECT(check_conflicts(p, onep1, onep2));
}

TEST_CASE(zero_merge2)
{
    schedule_target t{};
    migraphx::program p;
    auto one    = p.add_literal(1);
    auto onep1  = p.add_instruction(unary_op{}, one);
    auto onep2  = p.add_instruction(unary_op{}, one);
    auto binary = p.add_instruction(migraphx::op::identity{},
                                    p.add_instruction(migraphx::op::identity{}, onep1),
                                    p.add_instruction(migraphx::op::identity{}, onep2));
    p.compile(t);
    EXPECT(not t.has_stream(one));
    EXPECT(t.get_stream(onep1) != t.get_stream(onep2));
    // No stream assignment
    EXPECT(not t.has_stream(binary));
    // There is no wait
    EXPECT(get_wait_for(binary).empty());
    EXPECT(check_conflicts(p, onep1, onep2));
}

TEST_CASE(zero_merge3)
{
    schedule_target t{};
    migraphx::program p;
    auto one   = p.add_literal(1);
    auto onep1 = p.add_instruction(unary_op{}, one);
    auto onep2 = p.add_instruction(unary_op{}, one);
    auto id    = p.add_instruction(migraphx::op::identity{}, onep1, onep2);
    auto final = p.add_instruction(unary_op{}, id);
    p.compile(t);
    EXPECT(not t.has_stream(one));
    EXPECT(t.get_stream(onep1) != t.get_stream(onep2));
    // No stream assignment
    EXPECT(not t.has_stream(id));
    // There is no wait
    EXPECT(get_wait_for(id).empty());
    // Stream assignment for final op
    EXPECT(t.get_stream(final) == 0);
    EXPECT(get_wait_for(final) ==
           get_wait_for(t.get_stream(final), {t.get_stream(onep1), t.get_stream(onep2)}));
    EXPECT(check_conflicts(p, onep1, onep2));
}

TEST_CASE(zero_merge4)
{
    schedule_target t{};
    migraphx::program p;
    auto one   = p.add_literal(1);
    auto onep1 = p.add_instruction(unary_op{}, one);
    auto onep2 = p.add_instruction(unary_op{}, one);
    auto id    = p.add_instruction(migraphx::op::identity{},
                                p.add_instruction(migraphx::op::identity{}, onep1),
                                p.add_instruction(migraphx::op::identity{}, onep2));
    auto final = p.add_instruction(unary_op{}, id);
    p.compile(t);
    EXPECT(not t.has_stream(one));
    EXPECT(t.get_stream(onep1) != t.get_stream(onep2));
    // No stream assignment
    EXPECT(not t.has_stream(id));
    // There is no wait
    EXPECT(get_wait_for(id).empty());
    // Stream assignment for final op
    EXPECT(t.get_stream(final) == 0);
    EXPECT(get_wait_for(final) ==
           get_wait_for(t.get_stream(final), {t.get_stream(onep1), t.get_stream(onep2)}));
    EXPECT(check_conflicts(p, onep1, onep2));
}

TEST_CASE(double_entry)
{
    schedule_target t{};
    migraphx::program p;
    auto one    = p.add_instruction(stream_free_op{}, p.add_literal(1));
    auto two    = p.add_instruction(stream_free_op{}, p.add_literal(2));
    auto onep   = p.add_instruction(unary_op{}, one);
    auto twop   = p.add_instruction(unary_op{}, two);
    auto binary = p.add_instruction(nary_op{}, onep, twop);
    p.compile(t);
    EXPECT(not t.has_stream(one));
    EXPECT(not t.has_stream(two));
    EXPECT(t.get_stream(onep) != t.get_stream(twop));
    EXPECT(t.get_stream(binary) == 0);
    EXPECT(get_wait_for(binary) ==
           get_wait_for(t.get_stream(binary), {t.get_stream(onep), t.get_stream(twop)}));
    t.check_conflicts(p, {{onep, one}, {twop, two}});
}

TEST_CASE(two_branches)
{
    schedule_target t{};
    migraphx::program p;
    auto one    = p.add_literal(1);
    auto c1     = chain(p, 2, unary_op{}, one);
    auto i1     = p.add_instruction(unary_op{}, one);
    auto binary = p.add_instruction(nary_op{}, i1, c1.back());
    p.compile(t);
    EXPECT(not t.has_stream(one));
    EXPECT(t.get_stream(i1) == 1);
    for(auto ins : c1)
        EXPECT(t.get_stream(ins) == 0);
    EXPECT(t.get_stream(binary) == 0);
    EXPECT(get_wait_for(binary) ==
           get_wait_for(t.get_stream(binary), {t.get_stream(c1.back()), t.get_stream(i1)}));
    t.check_conflicts(p, {c1, {i1}});
}

TEST_CASE(four_branches)
{
    schedule_target t{};
    migraphx::program p;
    auto one    = p.add_literal(1);
    auto c1     = chain(p, 4, unary_op{}, one);
    auto c2     = chain(p, 3, unary_op{}, one);
    auto c3     = chain(p, 2, unary_op{}, one);
    auto i1     = p.add_instruction(unary_op{}, one);
    auto binary = p.add_instruction(nary_op{}, i1, c1.back(), c2.back(), c3.back());
    p.compile(t);
    EXPECT(not t.has_stream(one));
    EXPECT(t.get_stream(i1) == 3);
    for(auto ins : c1)
        EXPECT(t.get_stream(ins) == 0);
    for(auto ins : c2)
        EXPECT(t.get_stream(ins) == 1);
    for(auto ins : c3)
        EXPECT(t.get_stream(ins) == 2);
    EXPECT(t.get_stream(binary) == 0);
    EXPECT(get_wait_for(binary) == get_wait_for(t.get_stream(binary),
                                                {t.get_stream(c1.back()),
                                                 t.get_stream(c2.back()),
                                                 t.get_stream(c3.back()),
                                                 t.get_stream(i1)}));
    t.check_conflicts(p, {c1, c2, c3, {i1}});
}

TEST_CASE(five_branches)
{
    schedule_target t{};
    migraphx::program p;
    auto one    = p.add_literal(1);
    auto c1     = chain(p, 5, unary_op{}, one);
    auto c2     = chain(p, 4, unary_op{}, one);
    auto c3     = chain(p, 3, unary_op{}, one);
    auto c4     = chain(p, 2, unary_op{}, one);
    auto i1     = p.add_instruction(unary_op{}, one);
    auto binary = p.add_instruction(nary_op{}, i1, c1.back(), c2.back(), c3.back(), c4.back());
    p.compile(t);
    EXPECT(not t.has_stream(one));
    EXPECT(t.get_stream(i1) == 3);
    for(auto ins : c1)
        EXPECT(t.get_stream(ins) == 0);
    for(auto ins : c2)
        EXPECT(t.get_stream(ins) == 1);
    for(auto ins : c3)
        EXPECT(t.get_stream(ins) == 2);
    for(auto ins : c4)
        EXPECT(t.get_stream(ins) == 3);
    EXPECT(t.get_stream(binary) == 0);
    EXPECT(get_wait_for(binary) == get_wait_for(t.get_stream(binary),
                                                {t.get_stream(c1.back()),
                                                 t.get_stream(c2.back()),
                                                 t.get_stream(c3.back()),
                                                 t.get_stream(i1)}));
    t.check_conflicts(p, {c1, c2, c3, c4});
    t.check_conflicts(p, {c1, c2, c3, {i1}});
}

TEST_CASE(four_branches_eq)
{
    schedule_target t{};
    migraphx::program p;
    auto one    = p.add_literal(1);
    auto onep1  = p.add_instruction(unary_op{}, one);
    auto onep2  = p.add_instruction(unary_op{}, one);
    auto onep3  = p.add_instruction(unary_op{}, one);
    auto onep4  = p.add_instruction(unary_op{}, one);
    auto binary = p.add_instruction(nary_op{}, onep1, onep2, onep3, onep4);
    p.compile(t);
    EXPECT(not t.has_stream(one));
    EXPECT(
        sorted<std::size_t>(
            {t.get_stream(onep1), t.get_stream(onep2), t.get_stream(onep3), t.get_stream(onep4)}) ==
        unique<std::size_t>(
            {t.get_stream(onep1), t.get_stream(onep2), t.get_stream(onep3), t.get_stream(onep4)}));
    EXPECT(t.get_stream(binary) == 0);
    EXPECT(
        get_wait_for(binary) ==
        get_wait_for(
            t.get_stream(binary),
            {t.get_stream(onep1), t.get_stream(onep2), t.get_stream(onep3), t.get_stream(onep4)}));
    t.check_conflicts(p, {{onep1}, {onep2}, {onep3}, {onep4}});
}

TEST_CASE(seq_merge)
{
    schedule_target t{};
    migraphx::program p;
    auto one     = p.add_literal(1);
    auto c1      = chain(p, 2, unary_op{}, one);
    auto i1      = p.add_instruction(unary_op{}, one);
    auto binary1 = p.add_instruction(nary_op{}, i1, c1.back());

    auto c2      = chain(p, 2, unary_op{}, binary1);
    auto i2      = p.add_instruction(unary_op{}, binary1);
    auto binary2 = p.add_instruction(nary_op{}, i2, c2.back());

    p.compile(t);
    EXPECT(not t.has_stream(one));

    EXPECT(t.get_stream(i1) != t.get_stream(c1.back()));
    for(auto ins : c1)
        EXPECT(t.get_stream(ins) == t.get_stream(c1.back()));
    EXPECT(t.get_stream(binary1) == t.get_stream(c1.back()));
    EXPECT(get_wait_for(binary1) ==
           get_wait_for(t.get_stream(binary1), {t.get_stream(c1.back()), t.get_stream(i1)}));
    t.check_conflicts(p, {c1, {i1}});

    EXPECT(t.get_stream(i2) != t.get_stream(c2.back()));
    for(auto ins : c2)
        EXPECT(t.get_stream(ins) == t.get_stream(c2.back()));
    EXPECT(t.get_stream(binary2) == 0);
    EXPECT(get_wait_for(binary2) ==
           get_wait_for(t.get_stream(binary2), {t.get_stream(c2.back()), t.get_stream(i2)}));
    t.check_conflicts(p, {c2, {i2}});
}

TEST_CASE(par_merge)
{
    schedule_target t{};
    migraphx::program p;
    auto one     = p.add_literal(1);
    auto start1  = p.add_instruction(unary_op{}, one);
    auto c1      = chain(p, 3, unary_op{}, start1);
    auto i1      = p.add_instruction(unary_op{}, start1);
    auto binary1 = p.add_instruction(nary_op{}, i1, c1.back());

    auto start2  = p.add_instruction(unary_op{}, one);
    auto c2      = chain(p, 2, unary_op{}, start2);
    auto i2      = p.add_instruction(unary_op{}, start2);
    auto binary2 = p.add_instruction(nary_op{}, i2, c2.back());

    auto binary3 = p.add_instruction(nary_op{}, binary1, binary2);

    p.compile(t);
    EXPECT(not t.has_stream(one));
    EXPECT(t.get_stream(binary3) == 0);

    EXPECT(t.get_stream(i1) != t.get_stream(i2));
    for(auto ins : c1)
        EXPECT(t.get_stream(ins) == 0);
    EXPECT(t.get_stream(binary1) == 0);
    EXPECT(get_wait_for(binary1) ==
           get_wait_for(t.get_stream(binary1), {t.get_stream(c1.back()), t.get_stream(i1)}));
    t.check_conflicts(p, {c1, {i1}});

    for(auto ins : c2)
        EXPECT(t.get_stream(ins) == 3);
    EXPECT(t.get_stream(binary2) == 3);
    EXPECT(get_wait_for(binary2) ==
           get_wait_for(t.get_stream(binary2), {t.get_stream(c2.back()), t.get_stream(i2)}));
    t.check_conflicts(p, {c2, {i2}});

    EXPECT(check_conflicts(p, binary1, binary2));
    t.check_conflicts(p, {c1, {i1}, c2, {i2}});
}

TEST_CASE(inner_par_merge)
{
    schedule_target t{};
    migraphx::program p;
    auto one     = p.add_literal(1);
    auto start1  = p.add_instruction(unary_op{}, one);
    auto c1      = chain(p, 3, unary_op{}, start1);
    auto i1      = p.add_instruction(unary_op{}, start1);
    auto binary1 = p.add_instruction(nary_op{}, i1, c1.back());

    auto start2  = p.add_instruction(unary_op{}, one);
    auto c2      = chain(p, 2, unary_op{}, start2);
    auto i2      = p.add_instruction(unary_op{}, start2);
    auto binary2 = p.add_instruction(nary_op{}, i2, c2.back());

    auto outer1 = p.add_instruction(unary_op{}, one);
    auto outer2 = p.add_instruction(unary_op{}, one);

    auto output = p.add_instruction(nary_op{}, binary1, binary2, outer1, outer2);

    p.compile(t);
    EXPECT(not t.has_stream(one));
    EXPECT(t.get_stream(output) == 0);
    EXPECT(get_wait_for(output) == get_wait_for(t.get_stream(output),
                                                {t.get_stream(binary1),
                                                 t.get_stream(binary2),
                                                 t.get_stream(outer1),
                                                 t.get_stream(outer2)}));

    EXPECT(t.get_stream(outer1) == 1);
    EXPECT(t.get_stream(outer2) == 2);

    EXPECT(t.get_stream(i1) != t.get_stream(i2));
    for(auto ins : c1)
        EXPECT(t.get_stream(ins) == 0);
    EXPECT(t.get_stream(binary1) == 0);
    EXPECT(get_wait_for(binary1) ==
           get_wait_for(t.get_stream(binary1), {t.get_stream(c1.back()), t.get_stream(i1)}));
    t.check_conflicts(p, {c1, {i1}});

    for(auto ins : c2)
        EXPECT(t.get_stream(ins) == 3);
    EXPECT(t.get_stream(binary2) == 3);
    EXPECT(get_wait_for(binary2) ==
           get_wait_for(t.get_stream(binary2), {t.get_stream(c2.back()), t.get_stream(i2)}));
    t.check_conflicts(p, {c2, {i2}});

    EXPECT(check_conflicts(p, binary1, binary2));
    t.check_conflicts(p, {c1, {i1}, c2, {i2}, {outer1}, {outer2}});
}

TEST_CASE(par_merge_multi_entry)
{
    schedule_target t{};
    migraphx::program p;
    auto one     = p.add_literal(1);
    auto start1  = p.add_instruction(unary_op{}, one);
    auto c1      = chain(p, 3, unary_op{}, start1);
    auto i1      = p.add_instruction(unary_op{}, start1);
    auto binary1 = p.add_instruction(nary_op{}, i1, c1.back());

    auto two     = p.add_literal(1);
    auto start2  = p.add_instruction(unary_op{}, two);
    auto c2      = chain(p, 2, unary_op{}, start2);
    auto i2      = p.add_instruction(unary_op{}, start2);
    auto binary2 = p.add_instruction(nary_op{}, i2, c2.back());

    auto binary3 = p.add_instruction(nary_op{}, binary1, binary2);

    p.compile(t);
    EXPECT(not t.has_stream(one));
    EXPECT(not t.has_stream(two));
    EXPECT(t.get_stream(binary3) == 0);

    EXPECT(t.get_stream(i1) != t.get_stream(i2));
    for(auto ins : c1)
        EXPECT(t.get_stream(ins) == 0);
    EXPECT(t.get_stream(binary1) == 0);
    EXPECT(get_wait_for(binary1) ==
           get_wait_for(t.get_stream(binary1), {t.get_stream(c1.back()), t.get_stream(i1)}));
    t.check_conflicts(p, {c1, {i1}});

    for(auto ins : c2)
        EXPECT(t.get_stream(ins) == 3);
    EXPECT(t.get_stream(binary2) == 3);
    EXPECT(get_wait_for(binary2) ==
           get_wait_for(t.get_stream(binary2), {t.get_stream(c2.back()), t.get_stream(i2)}));
    t.check_conflicts(p, {c2, {i2}});

    EXPECT(check_conflicts(p, binary1, binary2));
    t.check_conflicts(p, {c1, {i1}, c2, {i2}});
}

TEST_CASE(inner_split1)
{
    schedule_target t{};
    migraphx::program p;
    auto one    = p.add_literal(1);
    auto c1     = chain(p, 2, unary_op{}, one);
    auto i1     = p.add_instruction(unary_op{}, one);
    auto s1     = p.add_instruction(unary_op{}, c1);
    auto s2     = p.add_instruction(unary_op{}, c1);
    auto output = p.add_instruction(nary_op{}, i1, s1, s2);
    p.compile(t);
    EXPECT(not t.has_stream(one));
    EXPECT(t.get_stream(i1) != t.get_stream(s1));
    EXPECT(t.get_stream(i1) != t.get_stream(s2));
    for(auto ins : c1)
        EXPECT(t.get_stream(ins) != t.get_stream(i1));
    EXPECT(t.get_stream(s1) != t.get_stream(s2));

    EXPECT(t.get_stream(output) == 0);
    EXPECT(
        get_wait_for(output) ==
        get_wait_for(t.get_stream(output), {t.get_stream(i1), t.get_stream(s1), t.get_stream(s2)}));
    EXPECT(get_wait_for(s1).empty());
    // TODO: Remove the extra wait here
    // EXPECT(get_wait_for(s2).empty());
    t.check_conflicts(p, {c1, {i1}, {s1}, {s2}});
}

TEST_CASE(inner_split2)
{
    schedule_target t{};
    migraphx::program p;
    auto one    = p.add_literal(1);
    auto c1     = chain(p, 2, unary_op{}, one);
    auto i1     = p.add_instruction(unary_op{}, one);
    auto s1     = chain(p, 3, unary_op{}, c1.back());
    auto s2     = chain(p, 4, unary_op{}, c1.back());
    auto output = p.add_instruction(nary_op{}, i1, s1.back(), s2.back());
    p.compile(t);
    EXPECT(not t.has_stream(one));
    EXPECT(t.get_stream(i1) != t.get_stream(s1.back()));
    EXPECT(t.get_stream(i1) != t.get_stream(s2.back()));
    for(auto ins : c1)
        EXPECT(t.get_stream(ins) != t.get_stream(i1));
    EXPECT(t.get_stream(s1.back()) != t.get_stream(s2.back()));

    EXPECT(t.get_stream(output) == 0);
    EXPECT(get_wait_for(output) ==
           get_wait_for(t.get_stream(output),
                        {t.get_stream(i1), t.get_stream(s1.back()), t.get_stream(s2.back())}));
    EXPECT(get_wait_for(s1.front()) == get_wait_for({t.get_stream(c1.back())}));
    t.check_conflicts(p, {c1, {i1}, s1, s2});
}

TEST_CASE(inception_resnet)
{
    schedule_target t{};
    migraphx::program p;
    auto one    = p.add_literal(1);
    auto input  = p.add_instruction(unary_op{}, one);
    auto c1     = chain(p, 2, unary_op{}, input);
    auto i1     = p.add_instruction(unary_op{}, input);
    auto binary = p.add_instruction(nary_op{}, i1, c1.back());
    auto output = p.add_instruction(nary_op{}, binary, input);
    p.compile(t);
    EXPECT(not t.has_stream(one));
    EXPECT(t.get_stream(i1) != 0);
    for(auto ins : c1)
        EXPECT(t.get_stream(ins) == 0);
    EXPECT(t.get_stream(binary) == 0);
    EXPECT(get_wait_for(binary) ==
           get_wait_for(t.get_stream(binary), {t.get_stream(c1.back()), t.get_stream(i1)}));
    EXPECT(t.get_stream(output) == 0);
    EXPECT(get_wait_for(output).empty());
    t.check_conflicts(p, {c1, {i1}});
}

TEST_CASE(inception1)
{
    schedule_target t{};
    migraphx::program p;

    auto i1     = p.add_literal(0);
    auto i2     = p.add_literal(1);
    auto i3     = p.add_literal(1);
    auto i4     = p.add_literal(2);
    auto i7     = p.add_instruction(nary_op{"i7"}, i1, i4, i3, i2);
    auto i8     = p.add_literal(2);
    auto i9     = p.add_instruction(migraphx::op::identity{}, i8);
    auto i10    = p.add_literal(1);
    auto i11    = p.add_instruction(nary_op{"i11"}, i7, i9, i10);
    auto i12    = p.add_literal(2);
    auto i13    = p.add_instruction(migraphx::op::identity{}, i12);
    auto i14    = p.add_literal(1);
    auto i15    = p.add_literal(1);
    auto i16    = p.add_literal(2);
    auto i17    = p.add_instruction(nary_op{"i17"}, i11, i16, i15, i13, i14);
    auto i18    = p.add_literal(2);
    auto i19    = p.add_instruction(migraphx::op::identity{}, i18);
    auto i20    = p.add_literal(1);
    auto i21    = p.add_literal(1);
    auto i22    = p.add_literal(2);
    auto i23    = p.add_instruction(nary_op{"i23"}, i17, i22, i21, i19, i20);
    auto i24    = p.add_literal(1);
    auto i25    = p.add_instruction(nary_op{"i25"}, i23, i24);
    auto i26    = p.add_literal(2);
    auto i27    = p.add_instruction(migraphx::op::identity{}, i26);
    auto i28    = p.add_literal(1);
    auto i29    = p.add_literal(1);
    auto i30    = p.add_literal(2);
    auto i31    = p.add_instruction(nary_op{"i31"}, i25, i30, i29, i27, i28);
    auto i32    = p.add_literal(2);
    auto i33    = p.add_instruction(migraphx::op::identity{}, i32);
    auto i34    = p.add_literal(1);
    auto i35    = p.add_literal(1);
    auto i36    = p.add_literal(2);
    auto i37    = p.add_instruction(nary_op{"i37"}, i31, i36, i35, i33, i34);
    auto i38    = p.add_literal(1);
    auto i39    = p.add_instruction(nary_op{"i39"}, i37, i38);
    auto i41    = p.add_literal(2);
    auto i42    = p.add_instruction(migraphx::op::identity{}, i41);
    auto i43    = p.add_literal(1);
    auto i44    = p.add_literal(1);
    auto i45    = p.add_literal(2);
    auto i48    = p.add_instruction(nary_op{"i48"}, i39, i45, i44, i42, i43);
    auto i49    = p.add_literal(2);
    auto i50    = p.add_instruction(migraphx::op::identity{}, i49);
    auto i51    = p.add_literal(1);
    auto i52    = p.add_literal(1);
    auto i53    = p.add_literal(2);
    auto i54    = p.add_instruction(nary_op{"i54"}, i48, i53, i52, i50, i51);
    auto i55    = p.add_literal(1);
    auto i56    = p.add_instruction(migraphx::op::identity{}, i55);
    auto i57    = p.add_literal(2);
    auto i58    = p.add_instruction(migraphx::op::identity{}, i57);
    auto i59    = p.add_literal(1);
    auto i60    = p.add_literal(2);
    auto i61    = p.add_instruction(nary_op{"i61"}, i54, i60, i59, i58, i56);
    auto i62    = p.add_literal(2);
    auto i63    = p.add_instruction(migraphx::op::identity{}, i62);
    auto i64    = p.add_literal(1);
    auto i65    = p.add_literal(1);
    auto i66    = p.add_literal(2);
    auto i69    = p.add_instruction(nary_op{"i69"}, i39, i66, i65, i63, i64);
    auto i70    = p.add_instruction(migraphx::op::identity{}, i55);
    auto i71    = p.add_literal(2);
    auto i72    = p.add_instruction(migraphx::op::identity{}, i71);
    auto i73    = p.add_literal(1);
    auto i74    = p.add_literal(2);
    auto i75    = p.add_instruction(nary_op{"i75"}, i69, i74, i73, i72, i70);
    auto i77    = p.add_literal(1);
    auto i80    = p.add_instruction(nary_op{"i80"}, i39, i77);
    auto i81    = p.add_instruction(migraphx::op::identity{}, i55);
    auto i82    = p.add_literal(2);
    auto i83    = p.add_instruction(migraphx::op::identity{}, i82);
    auto i84    = p.add_literal(1);
    auto i85    = p.add_literal(2);
    auto i86    = p.add_instruction(nary_op{"i86"}, i80, i85, i84, i83, i81);
    auto i88    = p.add_instruction(migraphx::op::identity{}, i55);
    auto i89    = p.add_literal(2);
    auto i90    = p.add_instruction(migraphx::op::identity{}, i89);
    auto i91    = p.add_literal(1);
    auto i92    = p.add_literal(2);
    auto i94    = p.add_instruction(nary_op{"i94"}, i39, i92, i91, i90, i88);
    auto i96    = p.add_instruction(migraphx::op::identity{}, i55, i94, i75, i61, i86);
    auto i97    = p.add_literal(2);
    auto i98    = p.add_instruction(migraphx::op::identity{}, i97);
    auto i99    = p.add_literal(3);
    auto i100   = p.add_literal(1);
    auto i101   = p.add_literal(2);
    auto output = p.add_instruction(nary_op{"output"}, i96, i101, i100, i98, i99);

    p.compile(t);

    EXPECT(t.get_streams({i7, i11, i17, i23, i25, i31, i37, i39}) ==
           t.get_streams({i7, i7, i7, i7, i7, i7, i7, i7}));
    EXPECT(t.get_streams({i48, i54, i61, output}) ==
           t.get_streams({output, output, output, output}));
    EXPECT(t.get_streams({i80, i86}) == t.get_streams({i80, i80}));
    EXPECT(t.get_streams({i69, i75}) == t.get_streams({i69, i69}));

    EXPECT(t.get_stream(i7) != t.get_stream(i80));
    EXPECT(t.get_stream(i69) != t.get_stream(i80));
    EXPECT(t.get_stream(i69) != t.get_stream(i7));
    EXPECT(t.get_stream(output) != t.get_stream(i69));
    EXPECT(t.get_stream(output) != t.get_stream(i80));

    EXPECT(get_wait_for(i80) == get_wait_for({t.get_stream(i39)}));
    EXPECT(get_wait_for(i69) == get_wait_for({t.get_stream(i39)}));
    EXPECT(get_wait_for(i94) == get_wait_for({t.get_stream(i39)}));
    EXPECT(
        get_wait_for(output) ==
        get_wait_for(t.get_stream(output),
                     {t.get_stream(i94), t.get_stream(i75), t.get_stream(i61), t.get_stream(i86)}));

    t.check_conflicts(p, {{i80, i86}, {i69, i75}, {i48, i54, i61}, {i94}});
}

int main(int argc, const char* argv[]) { test::run(argc, argv); }