gemm.cpp 3.72 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
#include <migraphx/cpu/gemm.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/requires.hpp>
4
#include <migraphx/shape_for_each.hpp>
Paul's avatar
Paul committed
5
6
#include <blaze/math/CustomMatrix.h>

Paul's avatar
Paul committed
7
namespace migraphx {
Paul's avatar
Paul committed
8
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
9
10
11
12
13
14
15
16
17
namespace cpu {

template <class T>
using matrix = blaze::CustomMatrix<T, blaze::unaligned, blaze::unpadded>; // NOLINT

template <class T>
static auto make_mat(tensor_view<T> x)
{
    const auto& s = x.get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
18
    // assert(s.lens().size() == 2);
19
    std::size_t n_dims = s.lens().size();
Shucai Xiao's avatar
Shucai Xiao committed
20
21
    std::size_t dim_0  = n_dims - 2;
    std::size_t dim_1  = n_dims - 1;
Paul's avatar
Paul committed
22
    if(s.transposed())
23
24
        return matrix<T>{x.data(), s.lens()[dim_1], s.lens()[dim_0], s.strides()[dim_1]};
    return matrix<T>{x.data(), s.lens()[dim_0], s.lens()[dim_1], s.strides()[dim_0]};
Paul's avatar
Paul committed
25
26
27
28
29
30
31
32
33
34
35
36
}

template <class T, class F>
static void visit_mat(tensor_view<T> x, F f)
{
    auto mat = make_mat(x);
    if(x.get_shape().transposed())
        f(blaze::trans(mat));
    else
        f(mat);
}

Paul's avatar
Paul committed
37
38
39
40
template <class T>
struct is_fast_gemm_type : std::false_type
{
};
Paul's avatar
Paul committed
41

Paul's avatar
Paul committed
42
43
44
45
template <>
struct is_fast_gemm_type<float> : std::true_type
{
};
Paul's avatar
Paul committed
46

47
template <class T, class F>
Shucai Xiao's avatar
Shucai Xiao committed
48
49
void migemm_impl(
    tensor_view<T> cmat, tensor_view<T> amat, tensor_view<T> bmat, F alpha, F beta, std::true_type)
Paul's avatar
Paul committed
50
51
52
53
{
    visit_mat(amat, [&](const auto& a) {
        visit_mat(bmat, [&](const auto& b) {
            auto c = make_mat(cmat);
Shucai Xiao's avatar
Shucai Xiao committed
54
55
56
57
58
59
            c      = beta * c;
            // This is a simple optimization to avoid
            // compute A * B if alpha is 0.0
            if(alpha != 0.0)
            {
                c = c + alpha * a * b;
Shucai Xiao's avatar
Shucai Xiao committed
60
            }
Paul's avatar
Paul committed
61
62
63
64
        });
    });
}

65
template <class T, class F>
Shucai Xiao's avatar
Shucai Xiao committed
66
67
void migemm_impl(
    tensor_view<T> cmat, tensor_view<T> amat, tensor_view<T> bmat, F alpha, F beta, std::false_type)
Paul's avatar
Paul committed
68
{
69
    std::size_t n_dims = cmat.get_shape().lens().size();
Shucai Xiao's avatar
Shucai Xiao committed
70
71
72
    std::size_t dim_0  = n_dims - 2;
    std::size_t dim_1  = n_dims - 1;
    auto k             = amat.get_shape().lens()[dim_1];
Paul's avatar
Paul committed
73

74
    assert(amat.get_shape().lens()[dim_1] == bmat.get_shape().lens()[dim_0]);
75
76
    assert(cmat.get_shape().lens()[dim_0] == amat.get_shape().lens()[dim_0]);
    assert(cmat.get_shape().lens()[dim_1] == bmat.get_shape().lens()[dim_1]);
Paul's avatar
Paul committed
77

78
79
80
    shape_for_each(cmat.get_shape(), [&](const auto& c_idx) {
        auto a_idx = c_idx;
        auto b_idx = c_idx;
Shucai Xiao's avatar
Shucai Xiao committed
81
        double s   = 0.0;
82
83
        dfor(k)([&](auto kk) {
            a_idx[dim_1] = b_idx[dim_0] = kk;
Shucai Xiao's avatar
Shucai Xiao committed
84
            s += amat(a_idx.begin(), a_idx.end()) * bmat(b_idx.begin(), b_idx.end());
85
        });
86
        cmat(c_idx.begin(), c_idx.end()) = alpha * s + cmat(c_idx.begin(), c_idx.end()) * beta;
Paul's avatar
Paul committed
87
    });
Paul's avatar
Paul committed
88
89
}

90
template <class T, class F>
Shucai Xiao's avatar
Shucai Xiao committed
91
void migemm_impl(tensor_view<T> cmat, tensor_view<T> amat, tensor_view<T> bmat, F alpha, F beta)
Paul's avatar
Paul committed
92
{
93
    auto lens = amat.get_shape().lens();
Shucai Xiao's avatar
Shucai Xiao committed
94
    bool batch_mul =
Shucai Xiao's avatar
Shucai Xiao committed
95
96
        std::accumulate(
            lens.rbegin() + 2, lens.rend(), std::size_t{1}, std::multiplies<std::size_t>()) == 1;
Shucai Xiao's avatar
Shucai Xiao committed
97
    if(batch_mul)
98
99
100
101
102
103
104
    {
        migemm_impl(cmat, amat, bmat, alpha, beta, is_fast_gemm_type<T>{});
    }
    else
    {
        migemm_impl(cmat, amat, bmat, alpha, beta, std::false_type{});
    }
Paul's avatar
Paul committed
105
106
}

Shucai Xiao's avatar
Shucai Xiao committed
107
108
template <class F>
void migemm(const argument& c_arg, const argument& a_arg, const argument& b_arg, F alpha, F beta)
Paul's avatar
Paul committed
109
{
Paul's avatar
Paul committed
110
111
    visit_all(c_arg, a_arg, b_arg)(
        [&](auto cmat, auto amat, auto bmat) { migemm_impl(cmat, amat, bmat, alpha, beta); });
Paul's avatar
Paul committed
112
113
}

114
115
116
117
118
119
120
121
122
123
void migemm(const argument& c_arg, const argument& a_arg, const argument& b_arg, float alpha, float beta)
{
    migemm(c_arg, a_arg, b_arg, alpha, beta);
}

void migemm(const argument& c_arg, const argument& a_arg, const argument& b_arg, int8_t alpha, int8_t beta)
{
    migemm(c_arg, a_arg, b_arg, alpha, beta);
}

Paul's avatar
Paul committed
124
} // namespace cpu
Paul's avatar
Paul committed
125
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
126
} // namespace migraphx