gemm.cpp 17.3 KB
Newer Older
Paul's avatar
Paul committed
1
#include <migraphx/gpu/gemm.hpp>
Paul's avatar
Paul committed
2
#include <migraphx/gpu/context.hpp>
wsttiger's avatar
wsttiger committed
3

Paul's avatar
Paul committed
4
namespace migraphx {
Paul's avatar
Paul committed
5
inline namespace MIGRAPHX_INLINE_NS {
wsttiger's avatar
wsttiger committed
6
7
namespace gpu {

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
template <class... Ts>
void generic_rocblas_scal(shape::as<float>, Ts&&... xs)
{
    rocblas_sscal(std::forward<Ts>(xs)...);
}

template <class... Ts>
void generic_rocblas_scal(shape::as<double>, Ts&&... xs)
{
    rocblas_dscal(std::forward<Ts>(xs)...);
}

template <class T, class... Ts>
void generic_rocblas_scal(shape::as<T>, Ts&&...)
{
    MIGRAPHX_THROW("GENERIC_ROCBLAS_SCAL: type unsupported by rocblas");
}

template <class... Ts>
void generic_rocblas_axpy(shape::as<half>, Ts&&... xs)
{
    rocblas_haxpy(std::forward<Ts>(xs)...);
}

template <class... Ts>
void generic_rocblas_axpy(shape::as<float>, Ts&&... xs)
{
    rocblas_saxpy(std::forward<Ts>(xs)...);
}

template <class... Ts>
void generic_rocblas_axpy(shape::as<double>, Ts&&... xs)
{
    rocblas_daxpy(std::forward<Ts>(xs)...);
}

template <class T, class... Ts>
void generic_rocblas_axpy(shape::as<T>, Ts&&...)
{
    MIGRAPHX_THROW("GENERIC_ROCBLAS_AXPY: type unsupported by rocblas");
}

template <class... Ts>
void generic_rocblas_dot(shape::as<float>, Ts&&... xs)
{
    rocblas_sdot(std::forward<Ts>(xs)...);
}

template <class... Ts>
void generic_rocblas_dot(shape::as<double>, Ts&&... xs)
{
    rocblas_ddot(std::forward<Ts>(xs)...);
}

template <class T, class... Ts>
void generic_rocblas_dot(shape::as<T>, Ts&&...)
{
    MIGRAPHX_THROW("GENERIC_ROCBLAS_DOT: type unsupported by rocblas");
}

template <class... Ts>
void generic_rocblas_gemv(shape::as<float>, Ts&&... xs)
{
    rocblas_sgemv(std::forward<Ts>(xs)...);
}

template <class... Ts>
void generic_rocblas_gemv(shape::as<double>, Ts&&... xs)
{
    rocblas_dgemv(std::forward<Ts>(xs)...);
}

template <class T, class... Ts>
void generic_rocblas_gemv(shape::as<T>, Ts&&...)
{
    MIGRAPHX_THROW("GENERIC_ROCBLAS_GEMMV: type unsupported by rocblas");
}

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
template <class... Ts>
void generic_rocblas_batched_gemm(shape::as<float>, Ts&&... xs)
{
    rocblas_sgemm_strided_batched(std::forward<Ts>(xs)...);
}

template <class... Ts>
void generic_rocblas_batched_gemm(shape::as<double>, Ts&&... xs)
{
    rocblas_dgemm_strided_batched(std::forward<Ts>(xs)...);
}

template <class... Ts>
void generic_rocblas_batched_gemm(shape::as<half>, Ts&&... xs)
{
    rocblas_hgemm_strided_batched(std::forward<Ts>(xs)...);
}

template <class T, class... Ts>
void generic_rocblas_batched_gemm(shape::as<T>, Ts&&...)
{
    MIGRAPHX_THROW("GENERIC_ROCBLAS_BATCHED_GEMM: type unsupported by rocblas");
}

Paul's avatar
Paul committed
110
template <class... Ts>
Paul's avatar
Paul committed
111
112
void generic_rocblas_gemm(shape::as<float>, Ts&&... xs)
{
Paul's avatar
Paul committed
113
    rocblas_sgemm(std::forward<Ts>(xs)...);
Paul's avatar
Paul committed
114
115
}

Paul's avatar
Paul committed
116
template <class... Ts>
Paul's avatar
Paul committed
117
118
void generic_rocblas_gemm(shape::as<double>, Ts&&... xs)
{
Paul's avatar
Paul committed
119
    rocblas_dgemm(std::forward<Ts>(xs)...);
Paul's avatar
Paul committed
120
121
}

Paul's avatar
Paul committed
122
template <class... Ts>
Paul's avatar
Paul committed
123
124
void generic_rocblas_gemm(shape::as<half>, Ts&&... xs)
{
Paul's avatar
Paul committed
125
    rocblas_hgemm(std::forward<Ts>(xs)...);
Paul's avatar
Paul committed
126
127
}

Paul's avatar
Paul committed
128
template <class T, class... Ts>
Paul's avatar
Paul committed
129
130
void generic_rocblas_gemm(shape::as<T>, Ts&&...)
{
131
    MIGRAPHX_THROW("GENERIC_ROCBLAS_GEMM: type unsupported by rocblas");
Paul's avatar
Paul committed
132
133
}

Paul's avatar
Paul committed
134
template <class T>
Paul's avatar
Paul committed
135
136
137
138
139
struct compute_rocblas_type
{
    using type = T;
};

Paul's avatar
Paul committed
140
template <class T>
Paul's avatar
Paul committed
141
142
143
144
145
struct compute_rocblas_type<const T>
{
    using type = const typename compute_rocblas_type<T>::type;
};

Paul's avatar
Paul committed
146
template <>
Paul's avatar
Paul committed
147
148
149
150
151
struct compute_rocblas_type<half>
{
    using type = rocblas_half;
};

Paul's avatar
Paul committed
152
template <class T>
Paul's avatar
Paul committed
153
154
155
156
157
158
159
160
using rb_type = typename compute_rocblas_type<T>::type;

template <class T>
rb_type<T> to_rocblas_type(T x)
{
    return reinterpret_cast<const rb_type<T>&>(x);
}

Paul's avatar
Paul committed
161
template <class T>
Paul's avatar
Paul committed
162
rb_type<T>* to_rocblas_type(T* x)
Paul's avatar
Paul committed
163
{
Paul's avatar
Paul committed
164
    return reinterpret_cast<rb_type<T>*>(x);
Paul's avatar
Paul committed
165
166
}

Paul's avatar
Paul committed
167
rocblas_half to_rocblas_type(half x) { return reinterpret_cast<const rocblas_half&>(x); }
Paul's avatar
Paul committed
168

wsttiger's avatar
wsttiger committed
169
170
shape miopen_gemm::compute_shape(const std::vector<shape>& inputs) const
{
171
    return op.compute_shape(inputs);
wsttiger's avatar
wsttiger committed
172
}
173

174
175
void miopen_gemm::fill_result(context& ctx, const shape& output_shape, 
    const argument& result, const argument& c) const
176
{
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    auto out_lens = output_shape.lens();
    auto c_lens = c.get_shape().lens();
    if (output_shape == c.get_shape())
    {
        output_shape.visit_type([&](auto as) {
            auto to_pointer = [&](auto&& arg) {
                return to_rocblas_type(as.from(arg.data()));
            };
            hipMemcpy(to_pointer(args[3]),
                    to_pointer(args[2]),
                    output_shape.bytes(),
                    hipMemcpyDeviceToDevice);
        });
    }
    else if (c.single())
    {
        output_shape.visit_type([&](auto as) {
            auto to_pointer = [&](auto&& arg, std::size_t offset) {
                return to_rocblas_type(as.from(arg.data() + offset));
            };

            for(std::size_t i = 0; i < output_shape.elements(); ++i)
            {
                hipMemcpy(to_pointer(args[3], i),
                        to_pointer(args[2]),
                        args[2].get_shape().bytes(),
                        hipMemcpyDeviceToDevice);            
            }
        });
    }
    else if (c_lens.size() == 1 ||
            (c_lens.size() == 2 && c_lens[1] == out_lens[1]))
    {
        auto m = out_lens[0];
        auto n = out_lens[1];
        output_shape.visit_type([&](auto as) {
            auto to_pointer = [&](auto&& arg, std::size_t offset) {
                return to_rocblas_type(as.from(arg.data() + offset));
            };

            for(std::size_t i = 0; i < m; ++i)
            {
                hipMemcpy(to_pointer(args[3], i * n),
                        to_pointer(args[2]),
                        args[2].get_shape().bytes(),
                        hipMemcpyDeviceToDevice);
            }
        });
    }
    // case of c_lens.size() == 2 && c_len[0] == out_lens[0]
    else
    {
        output_shape.visit_type([&](auto as) {
            auto to_pointer = [&](auto&& arg, std::size_t offset) {
                return to_rocblas_type(as.from(arg.data() + offset));
            };

            for(std::size_t i = 0; i < output_shape.elements(); ++i)
            {
                hipMemcpy(to_pointer(args[3], i),
                        to_pointer(args[2], i / n),
                        args[2].get_shape().type_size(),
                        hipMemcpyDeviceToDevice);
            }
        });
    }
243
244
}

wsttiger's avatar
wsttiger committed
245
246
247
argument miopen_gemm::compute(context& ctx,
                              const shape& output_shape,
                              const std::vector<argument>& args) const
wsttiger's avatar
wsttiger committed
248
{
249
    bool is_3inputs = (args.size() == 4);
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    if (is_3inputs)
    {
        fill_result(ctx, output_shape, args[3], args[2]);
        
        output_shape.visit_type([&](auto as) {
            auto alpha_r    = to_rocblas_type(as(op.alpha));
            auto beta_r     = to_rocblas_type(as(op.beta));
            bool transa        = args[0].get_shape().transposed();
            bool transb        = args[1].get_shape().transposed();
            rocblas_int lda    = args[0].get_shape().strides()[transa ? 1 : 0];
            rocblas_int ldb    = args[1].get_shape().strides()[transb ? 1 : 0];
            rocblas_int ldc    = args[2].get_shape().strides()[0];
            auto out_lens      = output_shape.lens();
            rocblas_int m      = out_lens[0];
            rocblas_int n      = out_lens[1];
            rocblas_int k      = args[0].get_shape().lens()[1];
            auto to_pointer = [&](auto&& arg) { return to_rocblas_type(as.from(arg.data())); };
            generic_rocblas_gemm(as,
                                 ctx.get_stream().get_rocblas(),
                                 transb ? rocblas_operation_transpose : rocblas_operation_none,
                                 transa ? rocblas_operation_transpose : rocblas_operation_none,
                                 n,
                                 m,
                                 k,
                                 &alpha_r,
                                 to_pointer(args[1]),
                                 ldb,
                                 to_pointer(args[0]),
                                 lda,
                                 &beta_r,
                                 to_pointer(args[2]),
                                 ldc);

        });

        return args[3];
    }
287

288
289
    // 2 input arguments cases
    // vector inner product
Shucai Xiao's avatar
Shucai Xiao committed
290
    if(output_shape.elements() == 1)
291
    {
292
        assert(args[0].get_shape().elements() == args[1].get_shape().elements());
293
294
295
        output_shape.visit_type([&](auto as) {
            auto alpha_r    = to_rocblas_type(as(op.alpha));
            auto to_pointer = [&](auto&& arg) { return to_rocblas_type(as.from(arg.data())); };
Shucai Xiao's avatar
Shucai Xiao committed
296
297
298
            generic_rocblas_dot(as,
                                ctx.get_stream().get_rocblas(),
                                args[1].get_shape().elements(),
299
300
301
302
                                to_pointer(args[0]),
                                1,
                                to_pointer(args[1]),
                                1,
303
                                to_pointer(args[2]));
304

Shucai Xiao's avatar
Shucai Xiao committed
305
306
307
308
            generic_rocblas_scal(as,
                                 ctx.get_stream().get_rocblas(),
                                 1,
                                 &alpha_r,
309
310
                                 to_pointer(args[2]));
                                 1);
311
312
        });
    }
313
314
    // matrix * vector
    else if (args[1].get_shape().lens().size() == 1)
315
    {
316
317
318
319
320
321
322
323
324
325
326
        auto a_lens = args[0].get_shape().lens();
        std::size_t dim_0 = a_lens.size() - 2;
        std::size_t dim_1 = a_lens.size() - 1;
        bool trans        = args[0].get_shape().transposed();
        rocblas_int m      = a_lens[trans ? dim_1 : dim_0];
        rocblas_int n      = a_lens[trans ? dim_0 : dim_1];
        float beta = 0.0f;
        rocblas_int lda    = args[0].get_shape().strides()[trans ? dim_1 : dim_0];

        assert(a_lens.back() == args[1].get_shape().elements());
        std::size_t batch_num = std::accumulate(a_lens.rbegin() + 2, a_lens.rend(), std::size_t{1}, std::multiplies<std::size_t>());
327
328
        output_shape.visit_type([&](auto as) {
            auto alpha_r    = to_rocblas_type(as(op.alpha));
329
330
331
            auto beta_r =   = to_rocblas_type(as(beta));
            auto to_pointer = [&](auto&& arg, std::size_t offset = 0) { return to_rocblas_type(as.from(arg.data() + offset)); };
            for (std::size_t batch_no = 0; batch_no < batch_num; ++batch_no)
332
            {
333
334
335
336
337
338
339
340
341
342
343
344
345
                generic_rocblas_gemv(as,
                                     ctx.get_stream().get_rocblas(),
                                     trans ? rocblas_operation_transpose : rocblas_operation_none,
                                     m,
                                     n,
                                     &alpha_r,
                                     to_pointer(args[0], batch_no * m * n),
                                     lda,
                                     to_pointer(args[1]),
                                     1,
                                     &beta_r,
                                     to_pointer(args[2], batch_no * n)
                                     1);
346
347
348
            }
        });
    }
349
350
    // vector * matrix
    else if (args[0].get_shape().lens().size() == 1)
351
    {
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
        auto b_lens = args[1].get_shape().lens();
        std::size_t dim_0 = b_lens.size() - 2;
        std::size_t dim_1 = b_lens.size() - 1;
        bool trans        = !args[1].get_shape().transposed();
        rocblas_int m      = b_lens[trans ? dim_1 : dim_0];
        rocblas_int n      = b_lens[trans ? dim_0 : dim_1];
        float beta = 0.0f;
        rocblas_int lda    = args[1].get_shape().strides()[trans ? dim_1 : dim_0];

        assert(b_lens.back() == args[0].get_shape().elements());
        std::size_t batch_num = std::accumulate(b_lens.rbegin() + 2, b_lens.rend(), std::size_t{1}, std::multiplies<std::size_t>());
        output_shape.visit_type([&](auto as) {
            auto alpha_r    = to_rocblas_type(as(op.alpha));
            auto beta_r =   = to_rocblas_type(as(beta));
            auto to_pointer = [&](auto&& arg, std::size_t offset = 0) { return to_rocblas_type(as.from(arg.data() + offset)); };
            for (std::size_t batch_no = 0; batch_no < batch_num; ++batch_no)
            {
                generic_rocblas_gemv(as,
Shucai Xiao's avatar
Shucai Xiao committed
370
                                     ctx.get_stream().get_rocblas(),
371
                                     trans ? rocblas_operation_transpose : rocblas_operation_none,
Shucai Xiao's avatar
Shucai Xiao committed
372
373
374
375
376
                                     n,
                                     m,
                                     &alpha_r,
                                     to_pointer(args[0]),
                                     lda,
377
378
                                     to_pointer(args[1], batch_no * m * n),
                                     1,
Shucai Xiao's avatar
Shucai Xiao committed
379
                                     &beta_r,
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
                                     to_pointer(args[2], batch_no * m)
                                     1);
            }
        });
    }
    // (batch) matrix multiplication
    else
    {
        bool transa        = args[0].get_shape().transposed();
        bool transb        = args[1].get_shape().transposed();
        auto a_lens = args[0].get_shape().lens();
        auto b_lens = args[1].get_shape().lens();
        auto out_lens = output_shape.lens();

        rocblas_int lda    = args[0].get_shape().strides()[transa ? a_lens.size() - 1 : a_lens.size() - 2];
        rocblas_int ldb    = args[1].get_shape().strides()[transb ? b_lens.size() - 1 : b_lens.size() - 2];
        rocblas_int ldc    = args[2].get_shape().strides()[out_lens.size() - 2];
        rocblas_int m      = out_lens[out_lens.size() - 2];
        rocblas_int n      = out_lens[out_lens.size() - 1];
        rocblas_int k      = args[0].get_shape().lens()[a_lens.size() - 1];
        auto input_dims = std::min(a_lens.size(), b_lens.size());
        std::size_t axis{0};
        for (axis = 2; axis < input_dims; ++axis)
        {
            if (a_lens[a_lens.size() - axis] != b_lens[b_lens.size() - axis])
            {
                break;
            }
        }

        // The number of matrices that can be computed in one call
        // batch_num > 1, we need to call the batch_gemm function, 
        // otherwise, call the gemm function directly
        std::size_t num_matrices = std::accumulate(a_lens.rbegin() + 2, 
                (axis == a_lens.size() ? a_lens.rend() : a_lens.rbegin() + axis), 
                std::size_t{1}, std::multiplies<std::size_t>());
        std::size_t a_len_diff = out_lens.size() - a_lens.size();
        std::size_t b_len_diff = out_lens.size() - b_lens.size();
        std::vector<std::size_t> a_batch_lens(a_lens.begin(), a_lens.begin() + a_lens.size() - axis);
        std::vector<std::size_t> b_batch_lens(b_lens.begin(), b_lens.begin() + b_lens.size() - axis);
        std::vector<std::size_t> out_batch_lens(out_lens.begin(), out_lens.begin() + out_lens.size() - axis);

        shape::type_t t = output_shape.type();
        shape a_batch_shape{t, a_batch_lens};
        shape b_batch_shape{t, b_batch_lens};
        shape out_diff_shape{t, out_batch_lens};

        shape_for_each(out_diff_shape, [&](auto out_idx) {
            std::size_t out_ind = out_batch_shape.index(out_idx.begin(), out_idx.end());
            std::vector<std::size_t> a_idx(a_lens.size() - axis);
            std::vector<std::size_t> b_idx(b_lens.size() - axis);
            std::transform(out_idx.begin() + a_len_diff, out_idx.end(), a_batch_lens.begin(), a_idx.begin(), [&](auto i, auto j) {
                return (j == 1) ? 0 : i;
            });
            std::transform(out_idx.begin() + b_len_diff, out_idx.end(), b_batch_lens.begin(), b_idx.begin(), [&](auto i, auto j) {
                return (j == 1) ? 0 : i;
            });

            std::size_t a_ind = a_batch_shape.index(a_idx.begin(), b_idx.end());
            std::size_t b_ind = b_batch_shape.index(b_idx.begin(), b_idx.end());

            output_shape.visit_type([&](auto as) {
                auto alpha_r    = to_rocblas_type(as(op.alpha));
                auto beta_r =   = to_rocblas_type(as(beta));
                auto to_pointer = [&](auto&& arg, std::size_t offset = 0) { return to_rocblas_type(as.from(arg.data() + offset)); };
                generic_rocblas_batched_gemm(as,
                                            ctx.get_stream().get_rocblas(),
                                            transb ? rocblas_operation_transpose : rocblas_operation_none,
                                            transa ? rocblas_operation_transpose : rocblas_operation_none,
                                            n,
                                            m,
                                            k,
                                            &alpha_r,
                                            to_pointer(args[1], k * n * num_matrices * b_ind),
                                            ldb,
                                            k * n,
                                            to_pointer(args[0], m * k * num_matrices * a_ind),
                                            lda,
                                            m * k,
                                            &beta_r,
                                            to_pointer(args[2], m * n * num_matrices * out_ind),
                                            ldc,
                                            m * n,
                                            num_matrices);
            });
        });
    }
467

468
    return args[2];
wsttiger's avatar
wsttiger committed
469
470
471
}

} // namespace gpu
Paul's avatar
Paul committed
472
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
473
} // namespace migraphx