"git@developer.sourcefind.cn:sugon_wxj/megatron-lm.git" did not exist on "bcd605f8570ebeeb0436c115ebbfafc3c5a40ae5"
mlir.cpp 13.5 KB
Newer Older
Paul Fultz II's avatar
Paul Fultz II committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <migraphx/gpu/mlir.hpp>
#include <migraphx/gpu/target.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/write_literals.hpp>
28
#include <migraphx/register_target.hpp>
Paul Fultz II's avatar
Paul Fultz II committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#include <migraphx/module.hpp>
#include <migraphx/program.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/verify_args.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/functional.hpp>
#include <test.hpp>

struct mlir_gpu_target : migraphx::gpu::target
{
    std::string name() const { return "mlir"; }
    std::vector<migraphx::pass> get_passes(migraphx::context& gctx,
                                           const migraphx::compile_options&) const
    {
        auto& ctx = migraphx::any_cast<migraphx::gpu::context>(gctx);
        return {migraphx::gpu::write_literals{&ctx}};
    }
};

std::string encode(const std::string& s)
{
    std::stringstream ss;
    bool prespace = false;
    for(auto c : s)
    {
        if(std::isspace(c) != 0)
        {
            if(not prespace)
                ss << "  ";
            prespace = true;
        }
        else if(std::isprint(c) != 0)
        {
            ss << c;
            prespace = false;
        }
    }
    return migraphx::trim(ss.str());
}

migraphx::program create_program_from_mlir(const migraphx::module& mmlir)
{
    migraphx::program p;
    auto* mm   = p.get_main_module();
    auto names = mmlir.get_parameter_names();
    std::vector<migraphx::instruction_ref> inputs;
    std::transform(names.begin(), names.end(), std::back_inserter(inputs), [&](const auto& name) {
        return mm->add_parameter(name, mmlir.get_parameter_shape(name));
    });
    std::sort(inputs.begin(), inputs.end(), migraphx::by(std::less<>{}, [](auto ins) {
                  return to_string(ins->get_operator());
              }));
    inputs.push_back(mm->add_parameter("output", mmlir.get_output_shapes().front()));

    migraphx::gpu::context ctx;
Paul Fultz II's avatar
Paul Fultz II committed
87
    migraphx::gpu::insert_mlir(*mm, mm->end(), compile_mlir(ctx, mmlir, inputs, {}), inputs);
Paul Fultz II's avatar
Paul Fultz II committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    return p;
}

migraphx::parameter_map generate_params(const migraphx::program& p)
{
    migraphx::parameter_map m;
    std::size_t i = 0;
    for(auto&& x : p.get_parameter_shapes())
    {
        // m[x.first] = migraphx::fill_argument(x.second, 1);
        m[x.first] = migraphx::generate_argument(x.second, i++);
    }
    return m;
}

migraphx::argument run_gpu(migraphx::program p, const migraphx::parameter_map& inputs)
{
    mlir_gpu_target t;
    p.compile(t);
    migraphx::parameter_map m;
    for(auto&& input : inputs)
    {
        m[input.first] = t.copy_to(input.second);
    }
    for(auto&& x : p.get_parameter_shapes())
    {
        if(m.count(x.first) == 0)
        {
            m[x.first] = t.allocate(x.second);
        }
    }
    return t.copy_from(p.eval(m).front());
}

migraphx::argument run_ref(migraphx::program p, const migraphx::parameter_map& inputs)
{
124
    p.compile(migraphx::make_target("ref"));
Paul Fultz II's avatar
Paul Fultz II committed
125
126
127
128
129
130
131
132
133
134
135
    return p.eval(inputs).front();
}

bool verify_mlir(const migraphx::module& mmlir)
{
    migraphx::program ref;
    ref.get_main_module()->insert_instructions(ref.get_main_module()->end(), &mmlir);

    auto inputs = generate_params(ref);

    auto mlir = create_program_from_mlir(mmlir);
136
137
    return migraphx::verify_args_with_tolerance(
        "mlir", run_gpu(mlir, inputs), migraphx::verify::expected{run_ref(ref, inputs)});
Paul Fultz II's avatar
Paul Fultz II committed
138
139
140
141
142
143
}

TEST_CASE(conv)
{
    const std::string mlir_output = R"__migraphx__(
module {
144
  func.func @mlir_convolution(%arg0: tensor<2x8x3x3xf32>, %arg1: tensor<1x8x4x4xf32>) -> tensor<1x2x2x2xf32> attributes {arch = "", kernel = "mixr", num_cu = 0 : i64} {
145
    %0 = migraphx.convolution(%arg1, %arg0) {dilation = [1, 1], group = 1 : i64, padding = [0, 0, 0, 0], padding_mode = 0 : i64, stride = [1, 1]} : (tensor<1x8x4x4xf32>, tensor<2x8x3x3xf32>) -> tensor<1x2x2x2xf32>
Paul Fultz II's avatar
Paul Fultz II committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
    return %0 : tensor<1x2x2x2xf32>
  }
}
)__migraphx__";
    migraphx::module m;
    auto x    = m.add_parameter("x", {migraphx::shape::float_type, {1, 8, 4, 4}});
    auto w    = m.add_parameter("w", {migraphx::shape::float_type, {2, 8, 3, 3}});
    auto conv = m.add_instruction(migraphx::make_op("convolution"), x, w);
    m.add_return({conv});
    auto s = migraphx::gpu::dump_mlir(m);
    // Skip test if MLIR is not enabled
    if(s.empty())
        return;
    CHECK(encode(s) == encode(mlir_output));
    EXPECT(verify_mlir(m));
}

TEST_CASE(conv_add_relu)
{
    const std::string mlir_output = R"__migraphx__(
module {
167
  func.func @mlir_convolution_add_relu(%arg0: tensor<1x2x2x2xf32>, %arg1: tensor<2x8x3x3xf32>, %arg2: tensor<1x8x4x4xf32>) -> tensor<1x2x2x2xf32> attributes {arch = "", kernel = "mixr", num_cu = 0 : i64} {
168
    %0 = migraphx.convolution(%arg2, %arg1) {dilation = [1, 1], group = 1 : i64, padding = [0, 0, 0, 0], padding_mode = 0 : i64, stride = [1, 1]} : (tensor<1x8x4x4xf32>, tensor<2x8x3x3xf32>) -> tensor<1x2x2x2xf32>
Paul Fultz II's avatar
Paul Fultz II committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
    %1 = migraphx.add(%0, %arg0) : (tensor<1x2x2x2xf32>, tensor<1x2x2x2xf32>) -> tensor<1x2x2x2xf32>
    %2 = migraphx.relu(%1) : (tensor<1x2x2x2xf32>) -> tensor<1x2x2x2xf32>
    return %2 : tensor<1x2x2x2xf32>
  }
}
)__migraphx__";
    migraphx::module m;
    auto x    = m.add_parameter("x", {migraphx::shape::float_type, {1, 8, 4, 4}});
    auto w    = m.add_parameter("w", {migraphx::shape::float_type, {2, 8, 3, 3}});
    auto b    = m.add_parameter("b", {migraphx::shape::float_type, {1, 2, 2, 2}});
    auto conv = m.add_instruction(migraphx::make_op("convolution"), x, w);
    auto add  = m.add_instruction(migraphx::make_op("add"), conv, b);
    auto relu = m.add_instruction(migraphx::make_op("relu"), add);
    m.add_return({relu});
    auto s = migraphx::gpu::dump_mlir(m);
    // Skip test if MLIR is not enabled
    if(s.empty())
        return;
    CHECK(encode(s) == encode(mlir_output));
    EXPECT(verify_mlir(m));
}

191
192
193
194
TEST_CASE(quant_dot_add)
{
    const std::string mlir_output = R"__migraphx__(
module {
195
  func.func @mlir_quant_dot_add(%arg0: tensor<1x5x4xi8>, %arg1: tensor<1x4x3xi8>, %arg2: tensor<1x5x3xi32>) -> tensor<1x5x3xi32> attributes {arch = "", kernel = "mixr", num_cu = 0 : i64} {
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
    %0 = migraphx.quant_dot(%arg0, %arg1) : (tensor<1x5x4xi8>, tensor<1x4x3xi8>) -> tensor<1x5x3xi32>
    %1 = migraphx.add(%0, %arg2) : (tensor<1x5x3xi32>, tensor<1x5x3xi32>) -> tensor<1x5x3xi32>
    return %1 : tensor<1x5x3xi32>
  }
}
)__migraphx__";
    migraphx::module m;
    auto arg0 = m.add_parameter("arg0", {migraphx::shape::int8_type, {1, 5, 4}});
    auto arg1 = m.add_parameter("arg1", {migraphx::shape::int8_type, {1, 4, 3}});
    auto arg2 = m.add_parameter("arg2", {migraphx::shape::int32_type, {1, 5, 3}});
    auto conv = m.add_instruction(migraphx::make_op("quant_dot"), arg0, arg1);
    auto add  = m.add_instruction(migraphx::make_op("add"), conv, arg2);
    m.add_return({add});

    auto s = migraphx::gpu::dump_mlir(m);
    // Skip test if MLIR is not enabled
    if(s.empty())
        return;
    CHECK(encode(s) == encode(mlir_output));
    EXPECT(verify_mlir(m));
}

218
219
220
221
TEST_CASE(dot_add)
{
    const std::string mlir_output = R"__migraphx__(
module {
222
  func.func @mlir_dot_add(%arg0: tensor<1x5x4xf32>, %arg1: tensor<1x4x3xf32>, %arg2: tensor<1x5x3xf32>) -> tensor<1x5x3xf32> attributes {arch = "", kernel = "mixr", num_cu = 0 : i64} {
223
    %0 = migraphx.dot(%arg0, %arg1) : (tensor<1x5x4xf32>, tensor<1x4x3xf32>) -> tensor<1x5x3xf32>
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    %1 = migraphx.add(%0, %arg2) : (tensor<1x5x3xf32>, tensor<1x5x3xf32>) -> tensor<1x5x3xf32>
    return %1 : tensor<1x5x3xf32>
  }
}
)__migraphx__";
    migraphx::module m;
    auto arg0 = m.add_parameter("arg0", {migraphx::shape::float_type, {1, 5, 4}});
    auto arg1 = m.add_parameter("arg1", {migraphx::shape::float_type, {1, 4, 3}});
    auto arg2 = m.add_parameter("arg2", {migraphx::shape::float_type, {1, 5, 3}});
    auto conv = m.add_instruction(migraphx::make_op("dot"), arg0, arg1);
    auto add  = m.add_instruction(migraphx::make_op("add"), conv, arg2);
    m.add_return({add});
    auto s = migraphx::gpu::dump_mlir(m);
    // Skip test if MLIR is not enabled
    if(s.empty())
        return;
    CHECK(encode(s) == encode(mlir_output));
    EXPECT(verify_mlir(m));
}

244
245
246
247
TEST_CASE(conv_int8_dequantize_quantize)
{
    const std::string mlir_output = R"__migraphx__(
module {
248
  func.func @mlir_quant_convolution_dequantizelinear_quantizelinear(%arg0: tensor<2x8x3x3xi8>, %arg1: tensor<1x8x4x4xi8>, %arg2: tensor<1x2x2x2xf32>, %arg3: tensor<1x2x2x2xi32>) -> tensor<1x2x2x2xi32> attributes {arch = "", kernel = "mixr", num_cu = 0 : i64} {
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
      %0 = migraphx.quant_convolution(%arg1, %arg0) {dilation = [1, 1], group = 1 : i64, padding = [0, 0, 0, 0], padding_mode = 0 : i64, stride = [1, 1]} : (tensor<1x8x4x4xi8>, tensor<2x8x3x3xi8>) -> tensor<1x2x2x2xi32>
      %1 = migraphx.dequantizelinear(%0, %arg2, %arg3) : (tensor<1x2x2x2xi32>, tensor<1x2x2x2xf32>, tensor<1x2x2x2xi32>) -> tensor<1x2x2x2xf32>
      %2 = migraphx.quantizelinear(%1, %arg2, %arg3) : (tensor<1x2x2x2xf32>, tensor<1x2x2x2xf32>, tensor<1x2x2x2xi32>) -> tensor<1x2x2x2xi32>
      return %2 : tensor<1x2x2x2xi32>
    }
}
)__migraphx__";

    migraphx::module m;
    auto x    = m.add_parameter("x", {migraphx::shape::int8_type, {1, 8, 4, 4}});
    auto w    = m.add_parameter("w", {migraphx::shape::int8_type, {2, 8, 3, 3}});
    auto conv = m.add_instruction(migraphx::make_op("quant_convolution"), x, w);
    migraphx::shape ss{migraphx::shape::float_type, {1, 2, 2, 2}};
    migraphx::shape sz{migraphx::shape::int32_type, {1, 2, 2, 2}};
    auto input2  = m.add_parameter("x_scale", ss);
    auto input3  = m.add_parameter("x_zero_point", sz);
    auto dequant = m.add_instruction(migraphx::make_op("dequantizelinear"), conv, input2, input3);
    auto r       = m.add_instruction(migraphx::make_op("quantizelinear"), dequant, input2, input3);

    m.add_return({r});
    auto s = migraphx::gpu::dump_mlir(m);
    // Skip test if MLIR is not enabled
    if(s.empty())
        return;
    CHECK(encode(s) == encode(mlir_output));
    EXPECT(verify_mlir(m));
}

277
278
279
280
TEST_CASE(dot_convert)
{
    const std::string mlir_output = R"__migraphx__(
module {
281
  func.func @mlir_dot_convert(%arg0: tensor<1x5x4xf32>, %arg1: tensor<1x4x3xf32>) -> tensor<1x5x3xf16> attributes {arch = "", kernel = "mixr", num_cu = 0 : i64} {
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
    %0 = migraphx.dot(%arg0, %arg1) : (tensor<1x5x4xf32>, tensor<1x4x3xf32>) -> tensor<1x5x3xf32>
    %1 = migraphx.convert(%0) {target_type  =  1  :  i64} : (tensor<1x5x3xf32>) -> tensor<1x5x3xf16>
    return %1 : tensor<1x5x3xf16>
  }
}
)__migraphx__";
    migraphx::module m;
    auto arg0  = m.add_parameter("arg0", {migraphx::shape::float_type, {1, 5, 4}});
    auto arg1  = m.add_parameter("arg1", {migraphx::shape::float_type, {1, 4, 3}});
    auto dot   = m.add_instruction(migraphx::make_op("dot"), arg0, arg1);
    auto trunc = m.add_instruction(
        migraphx::make_op("convert", {{"target_type", migraphx::shape::half_type}}), dot);
    m.add_return({trunc});
    auto s = migraphx::gpu::dump_mlir(m);
    // Skip test if MLIR is not enabled
    if(s.empty())
        return;
    CHECK(encode(s) == encode(mlir_output));
    EXPECT(verify_mlir(m));
}

TEST_CASE(dot_where)
{
    const std::string mlir_output = R"__migraphx__(
module {
307
  func.func @mlir_dot_where(%arg0: tensor<1x5x4xf32>, %arg1: tensor<1x4x3xf32>, %arg2: tensor<1x5x3xi8>, %arg3: tensor<1x5x3xf32>) -> tensor<1x5x3xf32> attributes {arch = "", kernel = "mixr", num_cu = 0 : i64} {
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
    %0 = migraphx.dot(%arg0, %arg1) : (tensor<1x5x4xf32>, tensor<1x4x3xf32>) -> tensor<1x5x3xf32>
    %1 = migraphx.where(%arg2, %0, %arg3) : (tensor<1x5x3xi8>, tensor<1x5x3xf32>, tensor<1x5x3xf32>) -> tensor<1x5x3xf32>
    return %1 : tensor<1x5x3xf32>
  }
}
)__migraphx__";
    migraphx::module m;
    auto arg0  = m.add_parameter("arg0", {migraphx::shape::float_type, {1, 5, 4}});
    auto arg1  = m.add_parameter("arg1", {migraphx::shape::float_type, {1, 4, 3}});
    auto arg2  = m.add_parameter("arg2", {migraphx::shape::bool_type, {1, 5, 3}});
    auto arg3  = m.add_parameter("arg3", {migraphx::shape::float_type, {1, 5, 3}});
    auto dot   = m.add_instruction(migraphx::make_op("dot"), arg0, arg1);
    auto where = m.add_instruction(migraphx::make_op("where"), arg2, dot, arg3);
    m.add_return({where});
    auto s = migraphx::gpu::dump_mlir(m);
    // Skip test if MLIR is not enabled
    if(s.empty())
        return;
    CHECK(encode(s) == encode(mlir_output));
    EXPECT(verify_mlir(m));
}

Paul Fultz II's avatar
Paul Fultz II committed
330
int main(int argc, const char* argv[]) { test::run(argc, argv); }