"...targets/git@developer.sourcefind.cn:gaoqiong/migraphx.git" did not exist on "a5b0afa0d8fb7d2710860d5db3aa87612a4b1e16"
gemm_impl.cpp 24.1 KB
Newer Older
1
2
3
/*
 * The MIT License (MIT)
 *
4
 * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
24

25
#include <rocblas/internal/rocblas-types.h>
26
#include <rocblas/rocblas.h>
27
#include <migraphx/gpu/rocblas.hpp>
28
#include <migraphx/gpu/gemm_impl.hpp>
29
#include <migraphx/reduce_dims.hpp>
30
31
#include <migraphx/generate.hpp>
#include <migraphx/time.hpp>
32
#include <type_traits>
33
34

using microseconds = std::chrono::duration<double, std::micro>;
Shucai Xiao's avatar
Shucai Xiao committed
35
36
37
38
39

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {

40
41
42
43
44
45
46
47
48
49
50
51
52
53
/*
Regular rocBLAS API takes compute_type as `rocblas_datatype` enum value v/s "ex3" BETA API takes it
as `rocblas_computetype` enum value. `rb_compute_type` is faciliator to implictly cast integer enum
value to required type that can be used inside `common_args` generator.
*/
struct rb_compute_type
{
    int type = 0;
    rb_compute_type(rocblas_datatype t) : type(static_cast<int>(t)) {}
    rb_compute_type(rocblas_computetype t) : type(static_cast<int>(t)) {}
    operator rocblas_datatype() const { return static_cast<rocblas_datatype>(type); }
    operator rocblas_computetype() const { return static_cast<rocblas_computetype>(type); }
};

54
// Convert rocBLAS datatypes to equivalent Migraphx data types
55
rocblas_datatype get_type(shape::type_t type)
Shucai Xiao's avatar
Shucai Xiao committed
56
{
57
    switch(type)
58
    {
59
60
61
62
63
64
65
    case shape::double_type: return rocblas_datatype_f64_r;
    case shape::float_type: return rocblas_datatype_f32_r;
    case shape::half_type: return rocblas_datatype_f16_r;
    case shape::int8_type: return rocblas_datatype_i8_r;
    case shape::uint8_type: return rocblas_datatype_u8_r;
    case shape::int32_type: return rocblas_datatype_i32_r;
    case shape::uint32_type: return rocblas_datatype_u32_r;
66
    case shape::fp8e4m3fnuz_type: return rocblas_datatype_f8_r;
Paul Fultz II's avatar
Paul Fultz II committed
67
    case shape::tuple_type:
68
    case shape::bool_type:
69
70
71
72
    case shape::uint16_type:
    case shape::int16_type:
    case shape::int64_type:
    case shape::uint64_type: MIGRAPHX_THROW("ROCBLAS_GEMM: data type not supported!");
73
    }
74
75

    MIGRAPHX_THROW("ROCBLAS_GEMM: data type not supported!");
76
77
}

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
void blas_shape(const shape& s)
{
    if(s.lens().size() < 2)
        return;
    if(std::none_of(s.strides().end() - 2, s.strides().end(), [&](auto i) { return i == 1; }))
        MIGRAPHX_THROW("GPU_GEMM: needs to have one matrix stride as 1");
    if(s.lens().size() < 3)
        return;
    shape batch_shape{s.type(),
                      {s.lens().begin(), s.lens().end() - 2},
                      {s.strides().begin(), s.strides().end() - 2}};
    auto batch_shapes = reduce_dims({batch_shape});
    if(batch_shapes.front().lens().size() != 1)
        MIGRAPHX_THROW("GPU_GEMM: Batch dimension is not collapsible");
}

94
95
96
97
98
99
100
101
102
103
104
105
106
shape transpose_batch(const shape& s, unsigned trans_batch)
{
    if(trans_batch == 0)
        return s;
    if(s.lens().size() < 3)
        return s;
    auto batch = s.lens().size() - 3;
    std::vector<int64_t> perm(s.lens().size());
    std::iota(perm.begin(), perm.end(), 0);
    std::swap(perm[batch], perm[batch + trans_batch]);
    return shape::from_permutation(s.type(), s.lens(), perm);
}

107
108
109
110
111
112
113
114
/**
 * Returns results of rocblas_status_success, rocblas_status_perf_degraded,
 * or rocblas_status_invalid_value.  Caller
 * is expected to check for invalid index.  Any other result causes an exception.
 *
 */
template <class F, class Pack, class... Ts>
auto rocblas_invoke(F f, Pack p, Ts... xs)
115
{
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    return p([=](auto... ws) {
        auto status = f(ws..., xs...);
        if(status != rocblas_status_success and status != rocblas_status_invalid_value)
        {
            if(status == rocblas_status_perf_degraded)
            {
                std::cerr << "WARNING: degraded perf. in rocBLAS call" << std::endl;
            }
            else
                MIGRAPHX_THROW("rocblas_invoke: rocBLAS call failed with status " +
                               std::to_string(status));
        }
        return status;
    });
130
131
}

132
static bool is_transposed(const shape& s) { return s.transposed() and s.strides().back() != 1; }
133

134
static rocblas_int get_batch_stride(const shape& s)
135
{
136
137
138
139
140
    // This value is not needed for non-strided inputs
    if(s.strides().size() < 3)
        return 0;
    else
        return s.strides()[s.strides().size() - 3];
141
142
}

143
144
145
146
147
148
149
150
151
152
/**
 * Wrapper for multiple rocBLAS calls.  The constructor creates parameters for
 * these calls based on data shapes and other values contained in the associated
 * instruction and operation.
 *
 * The template parameter T is not the type of the matrix data but of the weighting
 * coefficients alpha and beta (these are float in rocBLAS internals)
 */
template <typename T>
struct gemm_impl
Shucai Xiao's avatar
Shucai Xiao committed
153
{
154
155
156
157
158
159
160
161
162
    gemm_impl(const shape& output_shape,
              const std::vector<shape>& input_shapes,
              T alpha_param,
              T beta_param,
              bool compute_fp32_flag)
        : alpha(alpha_param),
          beta(beta_param),
          is_3inputs(input_shapes.size() == 4),
          compute_fp32(compute_fp32_flag)
163
    {
164
165
166
167
        if(not is_3inputs)
        {
            beta = 0;
        }
Shucai Xiao's avatar
Shucai Xiao committed
168

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
        // Create lambdas that will cast alpha, beta to the output shape's type
        // and retain the values being pointed to
        output_shape.visit_type([&](auto as) {
            auto alpha_r = as(alpha);
            auto beta_r  = as(beta);
            if(compute_fp32)
            {
                get_alpha = [=] { return &alpha; };
                get_beta  = [=] { return &beta; };
            }
            else
            {
                get_alpha = [=] { return &alpha_r; };
                get_beta  = [=] { return &beta_r; };
            }
        });
185

186
187
188
189
190
191
192
193
194
195
        transa     = is_transposed(input_shapes[0]);
        transb     = is_transposed(input_shapes[1]);
        auto n_dim = output_shape.lens().size();
        auto dim_0 = n_dim - 2;
        auto dim_1 = n_dim - 1;
        // Leading dimensions of matrices
        lda = input_shapes[0].strides()[transa ? dim_1 : dim_0];
        ldb = input_shapes[1].strides()[transb ? dim_1 : dim_0];
        ldc = input_shapes[2].strides()[dim_0];
        ldd = is_3inputs ? input_shapes[3].strides()[dim_0] : ldc;
196

197
198
199
200
201
202
        arg_type    = get_type(input_shapes[0].type());
        output_type = arg_type;
        if(output_type == rocblas_datatype_i8_r)
        {
            output_type = rocblas_datatype_i32_r;
        }
203
        compute_type = rb_compute_type{output_type};
204
205
        if(compute_fp32)
        {
206
207
            if(arg_type == rocblas_datatype_f16_r)
                compute_type = rocblas_datatype_f32_r;
208
        }
209
210
211
212
213
        if(arg_type == rocblas_datatype_f8_r)
        {
            assert(get_type(input_shapes[1].type()) == rocblas_datatype_f8_r);
            compute_type = rocblas_compute_type_f32;
        }
214

215
216
        auto a_lens = input_shapes[0].lens();
        auto b_lens = input_shapes[1].lens();
Shucai Xiao's avatar
Shucai Xiao committed
217

218
219
220
221
222
223
224
225
226
227
        auto out_lens = output_shape.lens();
        m             = out_lens[dim_0];
        n             = out_lens[dim_1];
        k             = input_shapes[0].lens()[dim_1];

        a_stride     = get_batch_stride(input_shapes[0]);
        b_stride     = get_batch_stride(input_shapes[1]);
        c_stride     = get_batch_stride(input_shapes[2]);
        d_stride     = is_3inputs ? get_batch_stride(input_shapes[3]) : c_stride;
        num_matrices = std::accumulate(
Shucai Xiao's avatar
Shucai Xiao committed
228
            out_lens.rbegin() + 2, out_lens.rend(), std::size_t{1}, std::multiplies<std::size_t>());
229
230
        strided_batched = num_matrices > 1;
        if(strided_batched and b_stride == 0 and input_shapes[0].standard())
Shucai Xiao's avatar
Shucai Xiao committed
231
        {
232
233
234
235
            // If the batch dimension of B is broadcasted, then we can
            // multiply m by the batch_size and use rocblas_gemm_ex
            // instead of rocblas_gemm_strided_batched_ex.
            m *= num_matrices;
236
237
238
            strided_batched = false;
        }
    }
239

240
241
    void run(context& ctx, const std::vector<argument>& input_args, int32_t solution_idx = 0) const
    {
242
243
244
245
246
#ifdef MIGRAPHX_USE_ROCBLAS_FP8_API
        if(rocblas_fp8_available() and
           std::any_of(input_args.begin(), input_args.end(), [](const auto i) {
               return i.get_shape().type() == migraphx::shape::fp8e4m3fnuz_type;
           }))
247
        {
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
            if(strided_batched)
            {
                auto common_args = create_strided_batched_args_common(ctx, input_args);
                rocblas_invoke(&rocblas_gemm_strided_batched_ex3,
                               common_args,
                               rocblas_gemm_algo_standard,
                               solution_idx,
                               gemm_flags);
            }
            else
            {
                auto common_args = create_gemm_ex_args_common(ctx, input_args);
                rocblas_invoke(&rocblas_gemm_ex3,
                               common_args,
                               rocblas_gemm_algo_standard,
                               solution_idx,
                               gemm_flags);
            }
266
267
        }
        else
268
#endif
269
        {
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
            if(strided_batched)
            {
                auto common_args = create_strided_batched_args_common(ctx, input_args);
                rocblas_invoke(&rocblas_gemm_strided_batched_ex,
                               common_args,
                               rocblas_gemm_algo_solution_index,
                               solution_idx,
                               gemm_flags);
            }
            else
            {
                auto common_args = create_gemm_ex_args_common(ctx, input_args);
                rocblas_invoke(&rocblas_gemm_ex,
                               common_args,
                               rocblas_gemm_algo_solution_index,
                               solution_idx,
                               gemm_flags);
            }
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
        }
    }

#ifdef MIGRAPHX_USE_ROCBLAS_TUNING_API
    auto validate(context& ctx, const std::vector<shape>& input_shapes, int32_t solution_idx) const
    {
        // Create dummy arguments for the shapes, and call the overloaded method
        std::vector<argument> input_args;
        std::transform(input_shapes.begin(),
                       input_shapes.end(),
                       std::back_inserter(input_args),
                       [](const shape& x) { return to_gpu(generate_argument(x)); });

        return validate(ctx, input_args, solution_idx);
    }

    /**
     * Checks a particular solution for validity by running it with the flag
     * rocblas_gemm_flags_check_solution_index (could be invalid if this model was
     * tuned with a different rocBLAS version)
     *
     * @return Returns either solution_idx if valid, or else the default value 0
     * if not.  The default does not mean list index 0, but tells the picker
     * to choose a solution.
     */
    int32_t
    validate(context& ctx, const std::vector<argument>& input_args, int32_t solution_idx) const
    {
        rocblas_status_ check_valid(rocblas_status_success);

        if(strided_batched)
        {
            auto common_args = create_strided_batched_args_common(ctx, input_args);
            check_valid      = rocblas_invoke(&rocblas_gemm_strided_batched_ex,
                                         common_args,
                                         rocblas_gemm_algo_solution_index,
                                         solution_idx,
                                         rocblas_gemm_flags_check_solution_index);
Shucai Xiao's avatar
Shucai Xiao committed
326
327
328
        }
        else
        {
329
330
331
332
333
334
            auto common_args = create_gemm_ex_args_common(ctx, input_args);
            check_valid      = rocblas_invoke(&rocblas_gemm_ex,
                                         common_args,
                                         rocblas_gemm_algo_solution_index,
                                         solution_idx,
                                         rocblas_gemm_flags_check_solution_index);
Shucai Xiao's avatar
Shucai Xiao committed
335
        }
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

        if(check_valid == rocblas_status_invalid_value)
        {
            std::cerr << "WARNING:  tuned solution is invalid; reverting to default" << std::endl;
            return 0;
        }
        return solution_idx;
    }
#endif

    /**
     * Helper method to create that subset of a long rocBLAS argument list that is common
     * to multiple "...strided_batched..." calls.
     *
     * The rocblas_gemm API handles inputs and output matrices as
     *  column-major format. When doing a C = A * B, we actually do
     *  C^T = (B^T) * (A^T). That is the reason we input args[1] as
     *   A and args[0] as B in calling the rocblas_gemm.
     *
     */
    auto create_strided_batched_args_common(context& ctx, const std::vector<argument>& args) const
    {
        return pack(ctx.get_stream().get_rocblas(),
                    transb ? rocblas_operation_transpose : rocblas_operation_none,
                    transa ? rocblas_operation_transpose : rocblas_operation_none,
                    n,
                    m,
                    k,
                    get_alpha(),
                    args[1].data(),
                    arg_type,
                    ldb,
                    b_stride,
                    args[0].data(),
                    arg_type,
                    lda,
                    a_stride,
                    get_beta(),
                    args[2].data(),
                    output_type,
                    ldc,
                    c_stride,
                    is_3inputs ? args[3].data() : args[2].data(),
                    output_type,
                    ldd,
                    d_stride,
                    num_matrices,
                    compute_type);
    }
    /**
     * Helper method to create that subset of a long rocBLAS argument list that is common
     * to multiple "gemm_ex..." calls.
     *
     * The rocblas_gemm API handles inputs and output matrices as
     *  column-major format. When doing a C = A * B, we actually do
     *   C^T = (B^T) * (A^T). That is the reason we input args[1] as
     *   A and args[0] as B in calling the rocblas_gemm.
     *
     * */
    auto create_gemm_ex_args_common(context& ctx, const std::vector<argument>& args) const
    {
        return pack(ctx.get_stream().get_rocblas(),
                    transb ? rocblas_operation_transpose : rocblas_operation_none,
                    transa ? rocblas_operation_transpose : rocblas_operation_none,
                    n,
                    m,
                    k,
                    get_alpha(),
                    args[1].data(),
                    arg_type,
                    ldb,
                    args[0].data(),
                    arg_type,
                    lda,
                    get_beta(),
                    args[2].data(),
                    output_type,
                    ldc,
                    is_3inputs ? args[3].data() : args[2].data(),
                    output_type,
                    ldd,
                    compute_type);
    }
419

420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
#ifdef MIGRAPHX_USE_ROCBLAS_TUNING_API
    /**
     * Find best rocBLAS solution:  Get list of solutions and try them all, returning the index
     * of the fastest one.
     */
    int tune(context& ctx, const std::vector<shape>& input_shapes) const
    {
        // tuning meta parameters
        const int hot_calls = 40;

        std::vector<argument> input_args;
        std::transform(input_shapes.begin(),
                       input_shapes.end(),
                       std::back_inserter(input_args),
                       [](const shape& x) { return to_gpu(generate_argument(x)); });

        // Get the solutions list in 2 rocBLAS steps:
        // 1.  Find out how many solutions there are and allocate the array
        // 2.  Get the solutions
        //
        rocblas_int list_size = 0;
        std::vector<rocblas_int> solution_indices;
        if(strided_batched)
        {
            auto common_args = create_strided_batched_args_common(ctx, input_args);
            rocblas_invoke(&rocblas_gemm_strided_batched_ex_get_solutions,
                           common_args,
                           rocblas_gemm_algo_solution_index,
                           gemm_flags,
                           nullptr,
                           &list_size);
            solution_indices.resize(list_size);

            auto common_sol_args = create_strided_batched_args_common(ctx, input_args);
            rocblas_invoke(&rocblas_gemm_strided_batched_ex_get_solutions,
                           common_sol_args,
                           rocblas_gemm_algo_solution_index,
                           gemm_flags,
                           solution_indices.data(),
                           &list_size);
        }
        else
        {
            auto common_args = create_gemm_ex_args_common(ctx, input_args);
            rocblas_invoke(&rocblas_gemm_ex_get_solutions,
                           common_args,
                           rocblas_gemm_algo_solution_index,
                           gemm_flags,
                           nullptr,
                           &list_size);
            solution_indices.resize(list_size);

            auto common_sol_args = create_gemm_ex_args_common(ctx, input_args);
            rocblas_invoke(&rocblas_gemm_ex_get_solutions,
                           common_sol_args,
                           rocblas_gemm_algo_solution_index,
                           gemm_flags,
                           solution_indices.data(),
                           &list_size);
        }

        double best_time  = std::numeric_limits<double>::max();
        double first_time = -1;
        // Initialize to default solution index
        rocblas_int best_sol = 0;
        for(auto sol : solution_indices)
        {
            // Warmup: the first call to an op. may not be representative since there is
            // more time taken initializing caches, etc. so we won't time it.
            run(ctx, input_args, sol);
            double host_time = time<milliseconds>([&] {
                for([[maybe_unused]] int hc : range(hot_calls))
                    run(ctx, input_args, sol);
                ctx.finish();
            });

            host_time /= hot_calls;

            // dev/evaluation only: track time for first solution.
            if(first_time < 0)
                first_time = host_time;

            // track current best
            if(host_time < best_time)
            {
                best_sol  = sol;
                best_time = host_time;
            }
        }
        std::cout << "Winning GEMM solution: " << best_sol << " in " << best_time << " ms, beats "
                  << first_time << "ms" << std::endl;
        return best_sol;
    }
#endif
    private:
    size_t num_matrices = 0;
    rocblas_int m       = 0;
    rocblas_int n       = 0;
    rocblas_int k       = 0;
    bool transa         = false;
    bool transb         = false;
    T alpha             = 0;
    T beta              = 0;

    std::function<const void*()> get_alpha{};
    std::function<const void*()> get_beta{};
    rocblas_gemm_flags gemm_flags = rocblas_gemm_flags_none;
    rocblas_int lda               = 0;
    rocblas_int ldb               = 0;
    rocblas_int ldc               = 0;
    rocblas_int ldd               = 0;
    rocblas_int a_stride          = 0;
    rocblas_int b_stride          = 0;
    rocblas_int c_stride          = 0;
    rocblas_int d_stride          = 0;
    rocblas_datatype arg_type     = rocblas_datatype_f32_r;
536
    rb_compute_type compute_type  = rocblas_datatype_f32_r;
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
    rocblas_datatype output_type  = rocblas_datatype_f32_r;
    bool strided_batched          = true;
    bool is_3inputs               = true;
    bool compute_fp32             = true;
}; // gemm_impl

void gemm_compute(context& ctx,
                  const shape& output_shape,
                  const std::vector<argument>& args,
                  float alpha,
                  float beta,
                  bool compute_fp32,
                  int32_t solution_idx)
{
    std::vector<shape> input_shapes;
    std::transform(args.begin(),
                   args.end(),
                   std::back_inserter(input_shapes),
                   [](const argument& x) { return x.get_shape(); });
    auto gemm_item = gemm_impl<float>(output_shape, input_shapes, alpha, beta, compute_fp32);
    gemm_item.run(ctx, args, solution_idx);
558
}
Shucai Xiao's avatar
Shucai Xiao committed
559

560
561
562
563
564
565
566
void gemm_compute(context& ctx,
                  const shape& output_shape,
                  const std::vector<argument>& args,
                  int32_t alpha,
                  int32_t beta,
                  bool compute_fp32,
                  int32_t solution_idx)
567
{
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
    std::vector<shape> input_shapes;
    std::transform(args.begin(),
                   args.end(),
                   std::back_inserter(input_shapes),
                   [](const argument& x) { return x.get_shape(); });
    auto gemm_item = gemm_impl<int32_t>(output_shape, input_shapes, alpha, beta, compute_fp32);
    gemm_item.run(ctx, args, solution_idx);
}

/**
 * Decides if the tune() or validate() method is appropriate and calls it.
 * Return value is the chosen solution index, or 0 to let picker choose it.
 */
int32_t gemm_finalize(context& ctx,
                      const shape& output_shape,
                      const std::vector<shape>& input_shapes,
                      float alpha,
                      float beta,
                      bool compute_fp32,
                      int32_t solution_idx)
{
#ifdef MIGRAPHX_USE_ROCBLAS_TUNING_API

    // This code should be called only if either the environment var.
    // MIGRAPHX_ENABLE_GEMM_TUNING, or option --exhaustive-tune, is set

    if(solution_idx == 0)
    {
        auto gemm_item = gemm_impl<float>(output_shape, input_shapes, alpha, beta, compute_fp32);
        solution_idx   = gemm_item.tune(ctx, input_shapes);
    }
    else
    {
        // If a tuned solution index is already given, don't tune again but validate
        // in case the data was tuned with a different rocBLAS version
        auto gemm_item = gemm_impl<float>(output_shape, input_shapes, alpha, beta, compute_fp32);
        solution_idx   = gemm_item.validate(ctx, input_shapes, solution_idx);
    }
#else
    (void)ctx, (void)output_shape, (void)input_shapes;
    (void)alpha, (void)beta, (void)compute_fp32;
#endif
    return solution_idx;
611
612
}

613
614
615
616
617
618
619
620
621
622
623
/**
 * Decides if the tune() or validate() method is appropriate and calls it.
 * Return value is the chosen solution index, or 0 to let picker choose it.
 */
int32_t gemm_finalize(context& ctx,
                      const shape& output_shape,
                      const std::vector<shape>& input_shapes,
                      int32_t alpha,
                      int32_t beta,
                      bool compute_fp32,
                      int32_t solution_idx)
624
{
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
#ifdef MIGRAPHX_USE_ROCBLAS_TUNING_API
    if(solution_idx == 0)
    {
        auto gemm_item = gemm_impl<int32_t>(output_shape, input_shapes, alpha, beta, compute_fp32);
        solution_idx   = gemm_item.tune(ctx, input_shapes);
    }
    else
    {
        // If a tuned solution index is already given, don't tune again but validate
        // in case the data was tuned with a different rocBLAS version
        auto gemm_item = gemm_impl<int32_t>(output_shape, input_shapes, alpha, beta, compute_fp32);
        solution_idx   = gemm_item.validate(ctx, input_shapes, solution_idx);
    }
#else
    (void)ctx, (void)output_shape, (void)input_shapes;
    (void)alpha, (void)beta, (void)compute_fp32;
#endif
    return solution_idx;
Shucai Xiao's avatar
Shucai Xiao committed
643
644
645
646
647
}

} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx