ck_gemm.cpp 9.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <fstream>
25
#include <migraphx/filesystem.hpp>
26
27
28
29
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/gpu/context.hpp>

30
#include <migraphx/gpu/ck.hpp>
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#include <migraphx/env.hpp>
#include <migraphx/file_buffer.hpp>
#include <migraphx/gpu/compile_gen.hpp>
#include <migraphx/gpu/compile_hip.hpp>
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/module.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/reduce_dims.hpp>
#include <migraphx/stringutils.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

namespace gpu {

using namespace migraphx::gpu::gen; // NOLINT

// NOLINTNEXTLINE
static const char* const ck_gemm_kernel = R"__migraphx__(
#include <args.hpp>
#include <migraphx/kernels/ck_gemm.hpp>
#include <migraphx/kernels/pointwise.hpp>
#include <migraphx/kernels/ops.hpp>
#include <${include}>

namespace migraphx {

${preamble}

extern "C" {

Paul Fultz II's avatar
Paul Fultz II committed
62
MIGRAPHX_GLOBAL void ${kernel}(${params})
63
64
65
66
67
68
69
70
71
72
73
74
75
76
{
    transform_args(make_tensors(), rotate_last())(${args})([](auto... xs) {
        ck_gemm<${solution}, ${blocks_per_batch}>(xs...);
    });
}

}

} // namespace migraphx

)__migraphx__";

struct ck_gemm_compiler : compiler<ck_gemm_compiler>
{
77
    std::vector<std::string> names() const { return {"ck_gemm", "gpu::ck_gemm"}; }
78
79
80
81
82
83
84

    ck::host::device_gemm_multiple_d::Problem create_problem(const std::vector<shape>& inputs,
                                                             const value& v) const
    {
        const auto& a_shape = inputs[0];
        const auto& b_shape = inputs[1];
        const auto& c_shape = inputs.back();
Alan Turner's avatar
Alan Turner committed
85

Alan Turner's avatar
Alan Turner committed
86
        // cppcheck-suppress unreadVariable
87
        auto rank        = a_shape.ndim();
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        auto batch_count = get_batch_count(c_shape);
        auto m           = c_shape.lens()[rank - 2];
        m                = can_fold_batch(inputs) ? m * batch_count : m;
        auto n           = c_shape.lens().back();
        auto k           = a_shape.lens().back();

        const bool trans_a = transposed_matrix(a_shape);
        const bool trans_b = transposed_matrix(b_shape);
        const bool trans_e = transposed_matrix(c_shape);
        const auto a_type  = get_type(a_shape);
        const auto b_type  = get_type(b_shape);
        const auto e_type  = get_type(c_shape);
        std::vector<bool> ds_layout;
        std::transform(inputs.begin() + 2,
                       inputs.end() - 1,
                       std::back_inserter(ds_layout),
                       [](const auto& i) { return transposed_matrix(i); });
        std::vector<ck::host::DataType> ds_type;
        std::transform(inputs.begin() + 2,
                       inputs.end() - 1,
                       std::back_inserter(ds_type),
                       [](const auto& i) { return get_type(i); });

        std::string ck_passthrough = "ck_passthrough";
        std::string cde_op         = ck_passthrough;
        assert(inputs.size() < 4 or v.contains("post"));
        if(v.contains("post"))
        {
            cde_op = v.at("post").to<std::string>();
        }

        return ck::host::device_gemm_multiple_d::Problem{m,
                                                         n,
                                                         k,
                                                         trans_a,
                                                         trans_b,
                                                         trans_e,
                                                         ds_layout,
                                                         a_type,
                                                         b_type,
                                                         e_type,
                                                         ds_type,
                                                         ck_passthrough,
                                                         ck_passthrough,
                                                         cde_op};
    }

    operation compile_op(context& ctx, const std::vector<shape>& inputs, const value& v) const
    {
        const auto& c_shape = inputs.back();
138
        auto tuning_value   = v.get("tuning_value", 34);
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
        auto batch_count = get_batch_count(c_shape);
        auto problem     = create_problem(inputs, v);

        const auto include_header   = problem.GetIncludeHeader();
        const auto solutions        = problem.GetSolutions(ctx.get_current_device().get_gfx_name());
        const auto& solution        = solutions.at(tuning_value);
        const auto template_str     = solution.template_str;
        const auto blocks_per_batch = solution.grid_size;
        const auto block_size       = solution.block_size;

        hip_compile_options options;
        options.additional_src_files = ck_headers();
        auto grid_size = can_fold_batch(inputs) ? blocks_per_batch : batch_count * blocks_per_batch;
        options.set_launch_params(v, grid_size * block_size, block_size);
        options.inputs         = inputs;
        options.output         = c_shape;
        options.kernel_name    = v.get("kernel", "ck_gemm_kernel");
        options.virtual_inputs = inputs;
        if(can_fold_batch(inputs))
        {
            auto vinputs = inputs;
            fold_batch_dims(vinputs[0]);
            remove_batch_dims(vinputs[1]);
            std::for_each(vinputs.begin() + 2, vinputs.end(), fold_batch_dims);
            options.virtual_inputs = vinputs;
        }

        if(v.get("check", false) or enabled(MIGRAPHX_CK_DEBUG{}))
            options.params += " -DMIGRAPHX_CK_CHECK=1";

        auto src = interpolate_string(ck_gemm_kernel,
                                      {{"solution", template_str},
                                       {"include", include_header},
                                       {"params", enum_params(inputs.size(), "void * private_p")},
                                       {"args", enum_params(inputs.size(), "private_p")},
                                       {"blocks_per_batch", to_string(blocks_per_batch)},
                                       {"preamble", v.get("preamble", std::string{})},
                                       {"kernel", options.kernel_name}});

        return compile_hip_code_object(src, options);
    }

    value create_settings(instruction_ref ins, const operation& op) const
    {
        auto v      = op.to_value();
        v["kernel"] = "ck_gemm_kernel";
        if(not ins->module_inputs().empty())
        {
            auto* pm      = ins->module_inputs().front();
            v["preamble"] = generate_pointwise(*pm, "post_ck_gemm_function") +
                            "\nMIGRAPHX_LIFT_CLASS(post_ck_gemm, post_ck_gemm_function);";
            v["post"]   = "ck_function_adaptor<post_ck_gemm>";
            v["kernel"] = "ck_gemm_" + generate_name_from_ops(*pm) + "_kernel";
        }
        return v;
    }

    compiler_replace
    compile(context& ctx, instruction_ref ins, const operation& op, const value& solution) const
    {
        auto shapes = to_shapes(ins->inputs());
        auto v      = create_settings(ins, op);
201
        if(not solution.is_null())
202
203
204
205
206
207
208
            v["tuning_value"] = solution;
        return {compile_op(ctx, shapes, v),
                [=](module& m, instruction_ref ins2, const operation& code_object) {
                    if(enabled(MIGRAPHX_LOG_CK_GEMM{}))
                    {
                        std::vector<shape> gemm_shapes{
                            shapes[0], shapes[1], shapes.back().with_type(shapes[0].type())};
209
                        std::cout << "gpu::ck_gemm: " << to_json_string(to_value(gemm_shapes))
210
211
212
213
214
215
216
                                  << std::endl;
                    }
                    m.replace_instruction(ins2, code_object, ins2->inputs());
                }};
    }

    optional<tuning_config>
217
    get_tuning_config(context& ctx, instruction_ref ins, const operation& op, bool exhaustive) const
218
    {
219
220
        if(not exhaustive and not enabled(MIGRAPHX_TUNE_CK{}))
            return nullopt;
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
        tuning_config tc;
        auto shapes    = to_shapes(ins->inputs());
        auto problem   = create_problem(shapes, create_settings(ins, op));
        auto solutions = problem.GetSolutions(ctx.get_current_device().get_gfx_name());
        tc.solutions.resize(solutions.size());
        std::iota(tc.solutions.begin(), tc.solutions.end(), 0);
        std::vector<shape> gemm_shapes{shapes[0], shapes[1], shapes.back()};
        tc.problem = to_value(gemm_shapes);
        return tc;
    }
};

} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx