quantization.cpp 7.96 KB
Newer Older
Shucai Xiao's avatar
Shucai Xiao committed
1
#include <migraphx/quantization.hpp>
2
3
4
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/iterator_for.hpp>
5
#include <migraphx/op/convert.hpp>
6
#include <migraphx/stringutils.hpp>
7
#include <migraphx/ranges.hpp>
8
9
10
11
12
#include <utility>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

Shucai Xiao's avatar
Shucai Xiao committed
13
instruction_ref insert_quant_ins(program& prog,
Shucai Xiao's avatar
Shucai Xiao committed
14
15
                            instruction_ref& ins,
                            shape::type_t type,
Shucai Xiao's avatar
Shucai Xiao committed
16
17
                            std::unordered_map<instruction_ref, instruction_ref>& map_ins,
                            float scale = 1.0f, float shift = 0.0f)
18
{
Shucai Xiao's avatar
Shucai Xiao committed
19
    if(map_ins.count(ins) > 0)
20
    {
Shucai Xiao's avatar
Shucai Xiao committed
21
        return map_ins[ins];
22
23
    }

Shucai Xiao's avatar
Shucai Xiao committed
24
    assert(ins->get_shape().type() == shape::float_type ||
Shucai Xiao's avatar
Shucai Xiao committed
25
26
27
28
29
           ins->get_shape().type() == shape::double_type ||
           ins->get_shape().type() == shape::int32_type);
    instruction_ref quant_ins{};
    quant_ins      = prog.insert_instruction(std::next(ins), op::convert{type}, ins);
    map_ins[ins] = quant_ins;
30

Shucai Xiao's avatar
Shucai Xiao committed
31
    return quant_ins;
32
33
}

Shucai Xiao's avatar
Shucai Xiao committed
34
35
36
37
38
// This function is to convert any instructions specified in the input
// from double or float to float16 by inserting a convert operator.
// For the conversion, there could be cases of overflowing, but it
// is very rare in the area of deeping learning, so we just do a 
// truncate of the input to get the fp16.
39
void quantize(program& prog, const std::vector<std::string>& ins_names)
40
{
41
    std::unordered_map<instruction_ref, instruction_ref> map_fp16;
Shucai Xiao's avatar
Shucai Xiao committed
42
    for(auto ins : iterator_for(prog))
43
    {
44
        // all indicates every instruction is converted
Shucai Xiao's avatar
Shucai Xiao committed
45
        if((not contains(ins_names, "all")) and (not contains(ins_names, ins->name())))
46
47
48
        {
            continue;
        }
49

50
        shape::type_t orig_type = ins->get_shape().type();
Shucai Xiao's avatar
Shucai Xiao committed
51
        // process all inputs, if input is a fp32 or fp64, convert it
52
        // to a fp16 by adding a convert operator.
53
        auto inputs = ins->inputs();
54
        std::vector<instruction_ref> converted_inputs;
Shucai Xiao's avatar
Shucai Xiao committed
55
        for(auto input : inputs)
56
57
        {
            auto s = input->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
58
            if(s.type() == shape::float_type || s.type() == shape::double_type)
59
            {
60
                // if the input is a convert operator, uses its input
61
62
                // as its current input
                instruction_ref input_fp16{};
63
                if(input->name() == "convert")
64
65
66
67
68
                {
                    input_fp16 = input->inputs().front();
                }
                else
                {
Shucai Xiao's avatar
Shucai Xiao committed
69
                    input_fp16 = insert_quant_ins(prog, input, shape::half_type, map_fp16);
70
                }
71
                converted_inputs.push_back(input_fp16);
72
            }
73
74
75
76
77
78
            else
            {
                converted_inputs.push_back(input);
            }
        }

79
        // no change for the input, go to the next instruction
Shucai Xiao's avatar
Shucai Xiao committed
80
        if(inputs == converted_inputs)
81
        {
82
            continue;
Shucai Xiao's avatar
Shucai Xiao committed
83
84
85
86
87
88
        }

        auto op        = ins->get_operator();
        auto ins_shape = compute_shape(op, converted_inputs);
        if(ins_shape.type() != orig_type)
        {
Shucai Xiao's avatar
Shucai Xiao committed
89
90
91
92
93
            // check the dead code case to avoid assert
            bool output_empty = ins->outputs().empty();
            auto ins_orig_type =
                prog.insert_instruction(std::next(ins), op::convert{orig_type}, ins);
            if(!output_empty)
94
            {
Shucai Xiao's avatar
Shucai Xiao committed
95
                prog.replace_instruction(ins, ins_orig_type);
Shucai Xiao's avatar
Shucai Xiao committed
96
            }
Shucai Xiao's avatar
Shucai Xiao committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
        }

        prog.replace_instruction(ins, op, converted_inputs);
    }
}

void quantize(program& prog) { quantize(prog, {"all"}); }

// int8 quantization is different from fp16 since int8 can only handle value
// -128 ~ 127. To convert the float or double to int8, we need a scale and 
// a shift, then the convert can be done as v_int8 = fp * scale + shift.
// To simplify the changes, we consider shift as 0.0f for now. 
void quantize_int8(program& prog, const std::vector<std::string>& ins_names)
{
    // For now, we only support the int8 quantization of gemm and convolution
    std::vector<std::string> op_names = {"dot", "convolution"};
    if (!std::all_of(ins_names.begin(), ins_names.end(), [&](auto name) {
        return std::find(op_names.begin(), op_names.end(), name); 
    }))
    {
        MIGRAPHX_THROW("QUANTIZE_INT8: only support DOT and CONVOLUTION operation");
    }

    // tmp value used just testing
    std::vector<std::pair<float, float>> int8_param{{1.0f, 0.0f}, {1.0f, 0.0f}, {1.0f, 0.0f}};

    std::unordered_map<instruction_ref, instruction_ref> map_quant_ins;
    for(auto ins : iterator_for(prog))
    {
        if(not contains(ins_names, ins->name()))
        {
            continue;
        }

        shape::type_t orig_type = ins->get_shape().type();

        // for the dot operator, there could be 2 or 3 input arguments
        // if the 3rd argument is available, convert it to an int32.
        std::vector<instruction_ref> converted_inputs;

        // process all inputs, if input is a fp32 or fp64, convert it
        // to a int8 type by adding a convert operator and replace 
        // the operator with the corresponding int8 version
        auto inputs = ins->inputs();
        std::size_t param_index = 0;
        for(auto input : inputs)
        {
            // In general, the target_type is int8, but for the dot 
            // operation, if it has 3 inputs, then the last one should 
            // be converted to int32_type
            shape::type_t quant_type = shape::int8_type;
            if (ins->name() == "dot" and inputs.size() == 3 and input == inputs.back())
Shucai Xiao's avatar
Shucai Xiao committed
149
            {
Shucai Xiao's avatar
Shucai Xiao committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
                quant_type = shape::int32_type;
            }
 
            auto param = int8_param[param_index++];
            auto s = input->get_shape();
            if(s.type() == shape::float_type || s.type() == shape::double_type || s.type() == shape::int32_type)
            {
                // if the input is a convert operator, uses its input
                // as its current input
                instruction_ref quant_input{};
                if(input->name() == "convert")
                {
                    auto tmp_ins = input->inputs().front();
                    if (tmp_ins->get_shape().type() == quant_type)
                    {
                        quant_input = input->inputs().front();
                    }
                    else
                    {
                        quant_input = insert_quant_ins(prog, input, quant_type, map_quant_ins, param.first, param.second);                        
                    }
                    
                }
                else
174
                {
Shucai Xiao's avatar
Shucai Xiao committed
175
                    quant_input = insert_quant_ins(prog, input, quant_type, map_quant_ins, param.first, param.second);
176
                }
Shucai Xiao's avatar
Shucai Xiao committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
                converted_inputs.push_back(quant_input);
            }
            else
            {
                converted_inputs.push_back(input);
            }
        }

        // no change for the input, go to the next instruction
        if(inputs == converted_inputs)
        {
            continue;
        }

        auto op        = ins->get_operator();
        auto ins_shape = compute_shape(op, converted_inputs);
        if(ins_shape.type() != orig_type)
        {
            // check the dead code case to avoid assert
            bool output_empty = ins->outputs().empty();
            // this conversion can be only from int32 to float or double
            auto ins_orig_type =
                prog.insert_instruction(std::next(ins), op::convert{orig_type}, ins);
            if(!output_empty)
            {
                prog.replace_instruction(ins, ins_orig_type);
203
            }
204
        }
Shucai Xiao's avatar
Shucai Xiao committed
205

Shucai Xiao's avatar
Shucai Xiao committed
206
207
208
209
210
        // When converting from other types to int8_type, there are parameters
        // used as scale and shift(.0f), which will generate results diffrent from
        // the original results. To adjust the output to be "correct(approximatly
        // equal)", we need additional calculation for that.
        
Shucai Xiao's avatar
Shucai Xiao committed
211
        prog.replace_instruction(ins, op, converted_inputs);
212
    }
Shucai Xiao's avatar
Shucai Xiao committed
213

214
215
}

Shucai Xiao's avatar
Shucai Xiao committed
216

217
218
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx