lowering.cpp 22.6 KB
Newer Older
Paul's avatar
Paul committed
1

Shucai Xiao's avatar
Shucai Xiao committed
2
#include <migraph/cpu/lowering.hpp>
Paul's avatar
Paul committed
3
4
5
6
7
#include <migraph/instruction.hpp>
#include <migraph/dfor.hpp>
#include <migraph/operators.hpp>
#include <migraph/shape_for_each.hpp>
#include <migraph/iterator_for.hpp>
Paul's avatar
Paul committed
8
#include <migraph/cpu/gemm.hpp>
Paul's avatar
Paul committed
9
#include <unordered_map>
Paul's avatar
Paul committed
10
#include <utility>
Paul's avatar
Paul committed
11
12

namespace migraph {
13
inline namespace MIGRAPH_INLINE_NS {
Paul's avatar
Paul committed
14
15
16
17
18
19
20
21
namespace cpu {

template <typename T>
T zero(const T&)
{
    return T(0);
}

22
23
24
25
//
// cpu implemenataion of batch norm for inference
//
// inputs are:
26
27
28
29
// args[0] -> input data buffer
// args[1] -> mini batch mean
// args[2] -> mini batch variance
// args[3] -> gamma
Aditya Atluri's avatar
Aditya Atluri committed
30
// args[4] -> bias
31
32
33
//
// The equation to compute batch norm for inference is:
//
Aditya Atluri's avatar
Aditya Atluri committed
34
// output[i] = bias + gamma * (input[i] + mean) / sqrt(variance + epsilon)
35
36
37
38
39
//
// the input data format should be nchw
//
struct cpu_batch_norm_inference
{
40
    op::batch_norm_inference op;
41

42
43
    std::string name() const { return "cpu::batch_norm_inference"; }

Paul's avatar
Paul committed
44
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
45

Paul's avatar
Paul committed
46
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
47
    {
48
49
        argument output{output_shape};

Aditya Atluri's avatar
Aditya Atluri committed
50
51
        double epsilon           = op.epsilon;
        auto input               = args[0];
Paul's avatar
Paul committed
52
53
54
55
        auto arg_gamma           = args[1];
        auto arg_bias            = args[2];
        auto mini_batch_mean     = args[3];
        auto mini_batch_variance = args[4];
56

57
        auto num_batch    = output_shape.lens()[0];
Aditya Atluri's avatar
Aditya Atluri committed
58
59
        auto num_channels = output_shape.lens()[1];
        auto image_height = output_shape.lens()[2];
60
        auto image_width  = output_shape.lens()[3];
Aditya Atluri's avatar
Aditya Atluri committed
61

62
        if(op.bn_mode == op::batch_norm_inference::spatial)
Scott Thornton's avatar
Scott Thornton committed
63
64
65
66
67
68
        {
            visit_all(output, input, mini_batch_mean, mini_batch_variance, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

                    dfor(num_batch, num_channels, image_height, image_width)(
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
Paul's avatar
Paul committed
69
                            assert((variance(c) + epsilon) > 0);
Scott Thornton's avatar
Scott Thornton committed
70
71
72
73
74
                            result(n, c, h, w) = gamma(c) * (buffer(n, c, h, w) - mean(c)) /
                                                     std::sqrt(variance(c) + epsilon) +
                                                 bias(c);
                        });
                });
75
76
        }

77
        if(op.bn_mode == op::batch_norm_inference::per_activation)
Scott Thornton's avatar
Scott Thornton committed
78
        {
79
80
81
            visit_all(output, input, mini_batch_mean, mini_batch_mean, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Scott Thornton's avatar
Scott Thornton committed
82
                    dfor(num_batch, num_channels, image_height, image_width)(
83
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
Paul's avatar
Paul committed
84
                            assert((variance(c, h, w) + epsilon) > 0);
Scott Thornton's avatar
Scott Thornton committed
85
86
87
88
89
90
                            result(n, c, h, w) = gamma(c, h, w) *
                                                     (buffer(n, c, h, w) - mean(c, h, w)) /
                                                     std::sqrt(variance(c, h, w) + epsilon) +
                                                 bias(c, h, w);
                        });
                });
91
        }
92
93
94
95
96

        return output;
    }
};

Khalique's avatar
Khalique committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
struct cpu_lrn
{
    op::lrn op;

    std::string name() const { return "cpu::lrn"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            int n_batch        = output_shape.lens()[0];
            int channels       = output_shape.lens()[1];
            int height         = output_shape.lens()[2];
            int width          = output_shape.lens()[3];
            auto alphaoverarea = op.alpha / op.size;
            auto radius = (op.size - 1) / 2;

            dfor(n_batch, height, width)([&](int b, int h, int w){
                double scale = 0;
                dfor(channels)([&](int c) {
                    auto start = (c - radius) < 0 ? 0 : (c - radius);
                    auto end = (c + radius) > channels ? channels : (c + radius);

                    for(auto k = start; k < end; ++k)
                    {
                        scale += std::pow(input(b, c, h, w), 2);
                    }

                    scale *= alphaoverarea;
                    scale += op.bias;
                    scale = std::pow(scale, -op.beta);
                    output(b, c, h, w) = input(b, c, h, w) * scale;
                });
            });
        });
        return result;
    }

};

Paul's avatar
Paul committed
137
138
struct cpu_convolution
{
139
    op::convolution op;
Paul's avatar
Paul committed
140
141

    std::string name() const { return "cpu::convolution"; }
Paul's avatar
Paul committed
142
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
            auto in_h = input.get_shape().lens()[2];
            auto in_w = input.get_shape().lens()[3];

            auto wei_c = weights.get_shape().lens()[1];
            auto wei_h = weights.get_shape().lens()[2];
            auto wei_w = weights.get_shape().lens()[3];

            dfor(output_shape.lens()[0],
                 output_shape.lens()[1],
                 output_shape.lens()[2],
                 output_shape.lens()[3])(
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x = i * op.stride[0] - op.padding[0];
                    const int start_y = j * op.stride[1] - op.padding[1];

                    double acc = 0;
                    dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc += input(o, k, in_x, in_y) * weights(w, k, x, y);
                        }
                    });
                    output(o, w, i, j) = acc;
                });
        });
        return result;
    }
};

Scott Thornton's avatar
Scott Thornton committed
178
179
struct cpu_im2col
{
180
    op::im2col op;
Scott Thornton's avatar
Scott Thornton committed
181

Scott Thornton's avatar
Scott Thornton committed
182
183
    static std::string name() { return "cpu::im2col"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Scott Thornton's avatar
Scott Thornton committed
184

wsttiger's avatar
wsttiger committed
185
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Scott Thornton's avatar
Scott Thornton committed
186
    {
Scott Thornton's avatar
Scott Thornton committed
187
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
188
        auto input_shape   = args[0].get_shape();
Scott Thornton's avatar
Scott Thornton committed
189
190
        auto weights_shape = args[1].get_shape();
        visit_all(result, args[0])([&](auto col, auto input) {
Scott Thornton's avatar
Scott Thornton committed
191
192
            const std::size_t& height   = input_shape.lens()[2];
            const std::size_t& width    = input_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
193
194
195
            const std::size_t& channels = weights_shape.lens()[1];
            const std::size_t& kernel_h = weights_shape.lens()[2];
            const std::size_t& kernel_w = weights_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
196
197
            const std::size_t& pad_h    = op.padding[0];
            const std::size_t& pad_w    = op.padding[1];
Scott Thornton's avatar
Scott Thornton committed
198
199
200
201
            const std::size_t& stride_h = op.stride[0];
            const std::size_t& stride_w = op.stride[1];

            int kdiv2_h, kdiv2_w;
Scott Thornton's avatar
Scott Thornton committed
202
203
            kdiv2_h = kernel_h / 2;
            kdiv2_w = kernel_w / 2;
Scott Thornton's avatar
Scott Thornton committed
204
            // calculate output sizes
Scott Thornton's avatar
Scott Thornton committed
205
206
            const std::size_t col_height = (height - kernel_h + 2 * pad_h) / stride_h + 1;
            const std::size_t col_width  = (width - kernel_w + 2 * pad_w) / stride_w + 1;
wsttiger's avatar
wsttiger committed
207
            // account for padding for the starting position of the input pixels
Scott Thornton's avatar
Scott Thornton committed
208
            std::size_t iinput = kdiv2_h - pad_h;
wsttiger's avatar
wsttiger committed
209
            // loop over output pixels (ioutput, joutput)
Scott Thornton's avatar
Scott Thornton committed
210
211
212
213
214
215
216
217
            for(std::size_t ioutput = 0; ioutput < col_height; ioutput++, iinput += stride_h)
            {
                std::size_t jinput = kdiv2_w - pad_w;
                for(std::size_t joutput = 0; joutput < col_width; joutput++, jinput += stride_w)
                {
                    // compute linear index for output
                    std::size_t ldx = ioutput * col_width + joutput;
                    std::size_t p   = 0;
wsttiger's avatar
wsttiger committed
218
219
220
221
222
223
224
225
226
227
                    dfor(channels,
                         kernel_h,
                         kernel_w)([&](std::size_t c, std::size_t koffset, std::size_t loffset) {
                        int idx     = iinput + koffset - kdiv2_h;
                        int jdx     = jinput + loffset - kdiv2_w;
                        col(ldx, p) = ((idx >= 0) && (idx < height) && (jdx >= 0) && (jdx < width))
                                          ? input(0, c, idx, jdx)
                                          : 0;
                        p++;
                    });
Scott Thornton's avatar
Scott Thornton committed
228
229
                }
            }
Scott Thornton's avatar
Scott Thornton committed
230
        });
Scott Thornton's avatar
Scott Thornton committed
231
232
233
234
        return result;
    }
};

Paul's avatar
Paul committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
struct max_pool
{
    static std::string name() { return "max"; }
    static double start() { return std::numeric_limits<double>::lowest(); }

    static double apply(double x, double y)
    {
        double m = std::max(x, y);
        return (m);
    }

    static double final(double x, double) { return (x); }
};

struct avg_pool
{
    static std::string name() { return "average"; }
    static double start() { return 0.0; }

    static double apply(double x, double y) { return x + y; }

    static double final(double x, double y) { return x / y; }
};

template <class Op>
struct cpu_pooling
{
262
    op::pooling op;
Paul's avatar
Paul committed
263
264

    std::string name() const { return "cpu::pooling_" + Op::name(); }
Paul's avatar
Paul committed
265
266
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using type = typename decltype(output)::value_type;
            auto in_h  = input.get_shape().lens()[2];
            auto in_w  = input.get_shape().lens()[3];

            dfor(output_shape.lens()[0],
                 output_shape.lens()[1],
                 output_shape.lens()[2],
                 output_shape.lens()[3])(
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x0 = i * op.stride[0] - op.padding[0];
                    const int start_y0 = j * op.stride[1] - op.padding[1];

                    const int hend = std::min(start_x0 + op.lengths[0], in_h);
                    const int wend = std::min(start_y0 + op.lengths[1], in_w);

                    const int start_x = std::max(start_x0, 0);
                    const int start_y = std::max(start_y0, 0);

                    const int w_h       = (hend - start_x);
                    const int w_w       = (wend - start_y);
                    const int pool_size = std::max(w_h * w_w, 1);

                    double acc = Op::start();
                    dfor(w_h, w_w)([&](int x, int y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc = Op::apply(acc, input(o, w, in_x, in_y));
                        }
                    });
                    output(o, w, i, j) = type(Op::final(acc, pool_size));
                });
        });
        return result;
    }
};

struct cpu_contiguous
{
310
    op::contiguous op;
Paul's avatar
Paul committed
311
    std::string name() const { return "cpu::contiguous"; }
Paul's avatar
Paul committed
312
313
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
314
    {
Paul's avatar
Paul committed
315
        assert(output_shape.standard());
Paul's avatar
Paul committed
316
317
318
319
320
321
322
323
324
325
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            shape_for_each(output.get_shape(), [&](const auto& idx) {
                output(idx.begin(), idx.end()) = input(idx.begin(), idx.end());
            });
        });
        return result;
    }
};

326
327
328
329
330
331
332
333
struct cpu_concat
{
    op::concat op;
    std::string name() const { return "cpu::concat"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
334
        std::vector<std::size_t> coffsets = op.compute_offsets(output_shape, args);
Scott Thornton's avatar
Scott Thornton committed
335
        for(std::size_t l = 0; l < args.size(); l++)
336
        {
Scott Thornton's avatar
Scott Thornton committed
337
            auto argl             = args[l];
338
339
            std::size_t nelements = argl.get_shape().elements();
            visit_all(result, argl)([&](auto output, auto input) {
wsttiger's avatar
wsttiger committed
340
341
342
                auto slice_shape =
                    shape{output_shape.type(), input.get_shape().lens(), output_shape.strides()};
                auto slice = make_view(slice_shape, output.data() + coffsets[l]);
wsttiger's avatar
wsttiger committed
343
                // cppcheck-suppress useStlAlgorithm
wsttiger's avatar
wsttiger committed
344
                for(std::size_t i = 0; i < nelements; i++)
wsttiger's avatar
wsttiger committed
345
346
                {
                    slice[i] = input[i];
347
348
349
350
351
352
353
                }
            });
        }
        return result;
    }
};

Paul's avatar
Paul committed
354
355
struct cpu_gemm
{
Shucai Xiao's avatar
Shucai Xiao committed
356
357
    op::dot op;
    std::string name() const { return "cpu::dot"; }
Paul's avatar
Paul committed
358
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
359

Paul's avatar
Paul committed
360
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
361
362
    {
        argument result{output_shape};
Paul's avatar
Paul committed
363
        migemm(result, args[0], args[1], op.alpha, op.beta);
Paul's avatar
Paul committed
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
        return result;
    }
};

struct identity_op
{
    std::string name() const { return "cpu::identity"; }
    auto fcn() const
    {
        return [](auto x) { return x; };
    }
};

struct abs_op
{
    std::string name() const { return "cpu::abs"; }
    auto fcn() const
    {
        return [](auto x) { return std::abs(x); };
    }
};

struct exp_op
{
    std::string name() const { return "cpu::exp"; }
    auto fcn() const
    {
        return [](auto x) { return std::exp(x); };
    }
};

struct sin_op
{
    std::string name() const { return "cpu::sin"; }
    auto fcn() const
    {
        return [](auto x) { return std::sin(x); };
    }
};

struct cos_op
{
    std::string name() const { return "cpu::cos"; }
    auto fcn() const
    {
        return [](auto x) { return std::cos(x); };
    }
};

struct tan_op
{
    std::string name() const { return "cpu::tan"; }
    auto fcn() const
    {
        return [](auto x) { return std::tan(x); };
    }
};

struct asin_op
{
    std::string name() const { return "cpu::asin"; }
    auto fcn() const
    {
        return [](auto x) { return std::asin(x); };
    }
};

struct acos_op
{
    std::string name() const { return "cpu::acos"; }
    auto fcn() const
    {
        return [](auto x) { return std::acos(x); };
    }
};

struct atan_op
{
    std::string name() const { return "cpu::atan"; }
    auto fcn() const
    {
        return [](auto x) { return std::atan(x); };
    }
};

struct tanh_op
{
    std::string name() const { return "cpu::tanh"; }
    auto fcn() const
    {
        return [](auto x) { return std::tanh(x); };
    }
};

struct sigmoid_op
{
    std::string name() const { return "cpu::sigmoid"; }
    auto fcn() const
    {
        return [](auto x) { return 1.f / (1.f + std::exp(-x)); };
    }
};

struct neg_op
{
    std::string name() const { return "cpu::neg"; }
    auto fcn() const
    {
        return [](auto x) { return -x; };
    }
};

struct relu_op
{
    std::string name() const { return "cpu::relu"; }
    auto fcn() const
    {
Paul's avatar
Paul committed
481
        return [](auto x) { return std::max(decltype(x){0}, x); };
Paul's avatar
Paul committed
482
483
484
    }
};

Khalique's avatar
Khalique committed
485
486
487
488
489
490
491
492
493
494
495
struct leaky_relu_op
{
    op::leaky_relu op;
    std::string name() const { return "cpu::leaky_relu"; }
    auto fcn() const
    {
        auto& a = op.alpha;
        return [a](auto x) { return x > 0 ? x : x * a; };
    }
};

Paul's avatar
Paul committed
496
497
498
499
500
template <typename Op>
struct cpu_unary
{
    Op op;
    std::string name() const { return op.name(); }
Paul's avatar
Paul committed
501
502
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
503
504
505
506
507
508
509
510
511
512
513
514
515
516
    {
        argument result{output_shape};
        result.visit([&](auto output) {
            args[0].visit([&](auto input) {
                std::transform(input.begin(), input.end(), output.begin(), op.fcn());
            });
        });
        return result;
    }
};

struct softmax2d
{
    std::string name() const { return "cpu::softmax2d"; }
Paul's avatar
Paul committed
517
518
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
            auto nb          = input.get_shape().lens()[0];
            auto nc          = input.get_shape().lens()[1];
            auto nh          = input.get_shape().lens()[2];
            auto nw          = input.get_shape().lens()[3];
            dfor(nb, nh, nw)([&](std::size_t b, std::size_t i, std::size_t j) {
                value_type cmax = std::numeric_limits<value_type>::lowest();
                for(int c = 0; c < nc; c++)
                {
                    cmax = std::max(cmax, input(b, c, i, j));
                }
                for(int c = 0; c < nc; c++)
                {
                    output(b, c, i, j) = std::exp(input(b, c, i, j) - cmax);
                }
                value_type sum = value_type(0);
                for(int c = 0; c < nc; c++)
                {
                    sum += output(b, c, i, j);
                }
                for(int c = 0; c < nc; c++)
                {
                    output(b, c, i, j) = output(b, c, i, j) / sum;
                }
            });
        });
        return result;
    }
};

struct add_op
{
    std::string name() const { return "add"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x + y; };
    }
};

struct sub_op
{
    std::string name() const { return "sub"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x - y; };
    }
};

struct mul_op
{
    std::string name() const { return "mul"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x * y; };
    }
};

struct div_op
{
    std::string name() const { return "div"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x / y; };
    }
};

template <typename Op>
struct cpu_binary
{
    Op op;
    std::string name() const { return op.name(); }
Paul's avatar
Paul committed
593
594
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input1, auto input2) {
            if(input1.get_shape().packed() and input2.get_shape().packed())
            {
                std::transform(
                    input1.begin(), input1.end(), input2.begin(), output.begin(), op.fcn());
            }
            else
            {
                shape_for_each(output.get_shape(), [&](const auto& idx) {
                    output(idx.begin(), idx.end()) =
                        op.fcn()(input1(idx.begin(), idx.end()), input2(idx.begin(), idx.end()));
                });
            }
        });
        return result;
    }
};

struct cpu_apply
{
    program* prog;
    std::unordered_map<std::string, std::function<void(instruction_ref)>> apply_map{};

    template <class T>
    auto simple_op()
    {
        return [this](instruction_ref ins) { apply_simple_op<T>(ins); };
    }

    template <class T, class Op>
    auto extend_op()
    {
        return [this](instruction_ref ins) { apply_extend_op<T, Op>(ins); };
    }

    void init()
    {
634
635
        apply_map["im2col"]      = extend_op<cpu_im2col, op::im2col>();
        apply_map["convolution"] = extend_op<cpu_convolution, op::convolution>();
636
        apply_map["dot"]         = extend_op<cpu_gemm, op::dot>();
Aditya Atluri's avatar
Aditya Atluri committed
637
        apply_map["batch_norm_inference"] =
638
            extend_op<cpu_batch_norm_inference, op::batch_norm_inference>();
Khalique's avatar
Khalique committed
639
        apply_map["lrn"]        = extend_op<cpu_lrn, op::lrn>();
640
        apply_map["contiguous"] = extend_op<cpu_contiguous, op::contiguous>();
Scott Thornton's avatar
Scott Thornton committed
641
        apply_map["concat"]     = extend_op<cpu_concat, op::concat>();
Khalique's avatar
Khalique committed
642
        apply_map["leaky_relu"] = extend_op<cpu_unary<leaky_relu_op>, op::leaky_relu>();
wsttiger's avatar
wsttiger committed
643
644
645
646
647
648
649
650
        apply_map["identity"]   = simple_op<cpu_unary<identity_op>>();
        apply_map["tanh"]       = simple_op<cpu_unary<tanh_op>>();
        apply_map["sigmoid"]    = simple_op<cpu_unary<sigmoid_op>>();
        apply_map["exp"]        = simple_op<cpu_unary<exp_op>>();
        apply_map["neg"]        = simple_op<cpu_unary<neg_op>>();
        apply_map["sin"]        = simple_op<cpu_unary<sin_op>>();
        apply_map["cos"]        = simple_op<cpu_unary<cos_op>>();
        apply_map["tan"]        = simple_op<cpu_unary<tan_op>>();
Khalique's avatar
Khalique committed
651
        apply_map["relu"]       = simple_op<cpu_unary<relu_op>>();
wsttiger's avatar
wsttiger committed
652
653
654
655
        apply_map["add"]        = simple_op<cpu_binary<add_op>>();
        apply_map["sub"]        = simple_op<cpu_binary<sub_op>>();
        apply_map["mul"]        = simple_op<cpu_binary<mul_op>>();
        apply_map["div"]        = simple_op<cpu_binary<div_op>>();
Paul's avatar
Paul committed
656
657
658
659
660
661
662
663
664

        apply_map["softmax"] = simple_op<softmax2d>();
    }

    void apply()
    {
        init();
        for(auto it : iterator_for(*prog))
        {
Khalique's avatar
Khalique committed
665
            if(it->name() == "pooling")
Paul's avatar
Paul committed
666
667
668
            {
                apply_pooling(it);
            }
Paul's avatar
Paul committed
669
            else if(apply_map.count(it->name()) > 0)
Paul's avatar
Paul committed
670
            {
Paul's avatar
Paul committed
671
                apply_map.at(it->name())(it);
Paul's avatar
Paul committed
672
673
674
675
676
677
678
            }
        }
    }

    template <class T>
    void apply_simple_op(instruction_ref ins)
    {
Paul's avatar
Paul committed
679
        prog->replace_instruction(ins, T{}, ins->inputs());
Paul's avatar
Paul committed
680
681
682
683
684
    }

    template <class T, class Op>
    void apply_extend_op(instruction_ref ins)
    {
685
        auto&& op = any_cast<Op>(ins->get_operator());
Paul's avatar
Paul committed
686
        prog->replace_instruction(ins, T{op}, ins->inputs());
Paul's avatar
Paul committed
687
688
689
690
    }

    void apply_pooling(instruction_ref ins)
    {
691
        auto&& op = any_cast<op::pooling>(ins->get_operator());
Paul's avatar
Paul committed
692
        if(op.mode == "max")
Paul's avatar
Paul committed
693
            prog->replace_instruction(ins, cpu_pooling<max_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
694
        else if(op.mode == "average")
Paul's avatar
Paul committed
695
            prog->replace_instruction(ins, cpu_pooling<avg_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
696
697
698
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
699
void lowering::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
700
701

} // namespace cpu
702
} // namespace MIGRAPH_INLINE_NS
Paul's avatar
Paul committed
703
} // namespace migraph