unet_inference.ipynb 4.86 KB
Newer Older
1
2
3
4
{
 "cells": [
  {
   "cell_type": "markdown",
5
   "id": "cd7a3990",
6
7
8
9
10
11
12
   "metadata": {},
   "source": [
    "## Import MIGraphX Python Library"
   ]
  },
  {
   "cell_type": "code",
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
13
   "execution_count": null,
14
   "id": "3930d7b8",
15
16
17
   "metadata": {},
   "outputs": [],
   "source": [
18
19
20
    "import migraphx\n",
    "from PIL import Image\n",
    "import numpy as np\n",
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
21
22
    "import matplotlib.pyplot as plt\n",
    "import torch"
23
24
25
26
   ]
  },
  {
   "cell_type": "markdown",
27
   "id": "b350c333",
28
29
30
31
32
33
34
   "metadata": {},
   "source": [
    "## Fetch U-NET ONNX Model"
   ]
  },
  {
   "cell_type": "code",
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
35
   "execution_count": null,
36
37
   "id": "02a7b7de",
   "metadata": {},
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
38
   "outputs": [],
39
   "source": [
40
    "!wget -nc https://www.dropbox.com/s/3ntkhyk30x05uuv/unet_13_256.onnx"
41
42
43
44
45
46
47
48
49
50
51
52
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a6cfe6e9",
   "metadata": {},
   "source": [
    "## Load ONNX Model"
   ]
  },
  {
   "cell_type": "code",
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
53
   "execution_count": null,
54
55
56
57
   "id": "e05a13dc",
   "metadata": {},
   "outputs": [],
   "source": [
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
58
59
60
61
62
    "model = migraphx.parse_onnx(\"unet_13_256.onnx\")"
   ]
  },
  {
   "cell_type": "code",
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
63
   "execution_count": null,
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
64
65
66
67
   "id": "52c67023",
   "metadata": {},
   "outputs": [],
   "source": [
68
69
70
71
72
73
74
75
76
77
78
79
80
    "model.compile(migraphx.get_target(\"gpu\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "80edb6f1",
   "metadata": {},
   "source": [
    "## Print model parameters"
   ]
  },
  {
   "cell_type": "code",
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
81
   "execution_count": null,
82
83
   "id": "fd5c3269",
   "metadata": {},
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
84
   "outputs": [],
85
86
87
88
89
90
91
   "source": [
    "print(model.get_parameter_names())\n",
    "print(model.get_parameter_shapes())"
   ]
  },
  {
   "cell_type": "code",
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
92
   "execution_count": null,
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
93
   "id": "47f956c7",
94
95
96
   "metadata": {},
   "outputs": [],
   "source": [
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    "def preprocess(pil_img, newW, newH):\n",
    "    w, h = pil_img.size\n",
    "    assert newW > 0 and newH > 0, 'Scale is too small'\n",
    "    pil_img = pil_img.resize((newW, newH))\n",
    "\n",
    "    img_nd = np.array(pil_img)\n",
    "\n",
    "    if len(img_nd.shape) == 2:\n",
    "        img_nd = np.expand_dims(img_nd, axis=2)\n",
    "\n",
    "    # HWC to CHW\n",
    "    img_print = pil_img\n",
    "    img_trans = img_nd.transpose((2, 0, 1))\n",
    "    if img_trans.max() > 1:\n",
    "        img_trans = img_trans / 255\n",
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
112
113
    "        \n",
    "    img_trans = np.expand_dims(img_trans, 0)\n",
114
115
116
117
    "\n",
    "    return img_trans, img_print\n",
    "\n",
    "def plot_img_and_mask(img, mask):\n",
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
118
119
    "    classes = mask.shape[0] if len(mask.shape) > 3 else 1\n",
    "    print(classes)\n",
120
121
122
123
124
125
126
127
128
    "    fig, ax = plt.subplots(1, classes + 1)\n",
    "    ax[0].set_title('Input image')\n",
    "    ax[0].imshow(img)\n",
    "    if classes > 1:\n",
    "        for i in range(classes):\n",
    "            ax[i+1].set_title(f'Output mask (class {i+1})')\n",
    "            ax[i+1].imshow(mask[:, :, i])\n",
    "    else:\n",
    "        ax[1].set_title(f'Output mask')\n",
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
129
    "        ax[1].imshow(mask[0,0])\n",
130
131
132
133
134
135
    "    plt.xticks([]), plt.yticks([])\n",
    "    plt.show()"
   ]
  },
  {
   "cell_type": "code",
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
136
   "execution_count": null,
137
138
   "id": "389ddc4d",
   "metadata": {},
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
139
   "outputs": [],
140
   "source": [
141
    "img = Image.open(\"./car1.jpeg\")\n",
142
    "img, imPrint = preprocess(img, 256, 256)\n",
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
143
144
145
146
    "input_im = np.zeros((1,3,256,256),dtype='float32') \n",
    "np.lib.stride_tricks.as_strided(input_im, shape=img.shape, strides=input_im.strides)[:] = img #getting correct stride\n",
    "print(input_im.strides)\n",
    "print(input_im.shape)\n",
147
    "imPrint.show()"
148
149
   ]
  },
150
151
  {
   "cell_type": "code",
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
152
   "execution_count": null,
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
153
   "id": "9de6f2a7",
154
   "metadata": {},
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
155
   "outputs": [],
156
   "source": [
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
157
158
159
    "mask = model.run({'inputs':input_im}) # Your first inference would take longer than the following ones.\n",
    "output_mask = np.array(mask[0])\n",
    "output_mask.shape"
160
161
162
163
   ]
  },
  {
   "cell_type": "code",
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
164
   "execution_count": null,
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
165
   "id": "58e3062c",
166
   "metadata": {},
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
167
   "outputs": [],
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
168
   "source": [
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
169
    "probs = torch.sigmoid(torch.from_numpy(output_mask))\n",
170
    "full_mask = probs > 0.996\n",
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
171
    "plot_img_and_mask(imPrint, full_mask)"
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
172
   ]
173
  },
174
175
176
177
178
179
180
  {
   "cell_type": "markdown",
   "id": "6126df0b",
   "metadata": {},
   "source": [
    "<b>NOTE:</b> The model weights utilized here are trained by using car images with plain backgrounds. The imperfect result on a \"real-world\" image as shown above is expected. To get a better result fine-tuning the model on a dataset of real-world examples is recommended. "
   ]
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
198
   "pygments_lexer": "ipython3"
199
200
201
202
203
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}