verify.hpp 3.79 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#ifndef RTG_GUARD_VERIFY_HPP
#define RTG_GUARD_VERIFY_HPP

#include <algorithm>
#include <cmath>
#include <functional>
#include <iostream>
#include <numeric>

namespace test {

// Compute the value of a range
template <class R>
using range_value = std::decay_t<decltype(*std::declval<R>().begin())>;

struct sum_fn
{
    template <class T, class U>
    auto operator()(T x, U y) const { return x + y; }
};
static constexpr sum_fn sum{};

struct max_fn
{
    template <class T>
    static T id(T x)
    {
        return x;
    }

    template <class T, class U>
    auto operator()(T x, U y) const { return x > y ? x : y; }
};
static constexpr max_fn max{};

namespace abs_diff_detail {
using std::fabs;
struct fn
{
    template <class T, class U>
    auto operator()(T x, U y) const { return fabs(x - y); }
};

} // namespace abs_diff_detail

static constexpr abs_diff_detail::fn abs_diff{};

struct not_finite_fn
{
    template <class T>
    bool operator()(T x) const
    {
        using std::isfinite;
        return not isfinite(x);
    }
};
static constexpr not_finite_fn not_finite{};

template <class T, class U>
T as(T, U x)
{
    return x;
}

struct compare_mag_fn
{
    template <class T, class U>
    bool operator()(T x, U y) const
    {
        using std::fabs;
        return fabs(x) < fabs(y);
    }
};
static constexpr compare_mag_fn compare_mag{};

struct square_diff_fn
{
    template <class T, class U>
    double operator()(T x, U y) const
    {
        return (x - y) * (x - y);
    }
};
static constexpr square_diff_fn square_diff{};

template <class R1>
bool range_empty(R1&& r1)
{
    return r1.begin() == r1.end();
}

template <class R1>
auto range_distance(R1&& r1) 
{ return std::distance(r1.begin(), r1.end()); }

template <class R1>
bool range_zero(R1&& r1)
{
    return std::all_of(r1.begin(), r1.end(), [](auto x) { return x == 0; });
}

template <class R1, class R2, class T, class Reducer, class Product>
T range_product(R1&& r1, R2&& r2, T state, Reducer r, Product p)
{
    return std::inner_product(r1.begin(), r1.end(), r2.begin(), state, r, p);
}

template <class R1, class R2, class Compare>
std::size_t mismatch_idx(R1&& r1, R2&& r2, Compare compare)
{
    auto p = std::mismatch(r1.begin(), r1.end(), r2.begin(), compare);
    return std::distance(r1.begin(), p.first);
}

template <class R1, class Predicate>
long find_idx(R1&& r1, Predicate p)
{
    auto it = std::find_if(r1.begin(), r1.end(), p);
    if(it == r1.end())
        return -1;
    else
        return std::distance(r1.begin(), it);
}

template <class R1, class R2>
double max_diff(R1&& r1, R2&& r2)
{
    return range_product(r1, r2, 0.0, max, abs_diff);
}

template <class R1, class R2, class T>
std::size_t mismatch_diff(R1&& r1, R2&& r2, T diff)
{
    return mismatch_idx(
        r1,
        r2,
        [&](auto x, auto y) {
            auto d = abs_diff(x, y);
            return !(d > diff && d < diff);
        });
}

template <class R1, class R2>
double rms_range(R1&& r1, R2&& r2)
{
    std::size_t n = range_distance(r1);
    if(n == range_distance(r2))
    {
        double square_difference = range_product(r1, r2, 0.0, sum_fn{}, square_diff);
        double mag1              = *std::max_element(r1.begin(), r1.end(), compare_mag);
        double mag2              = *std::max_element(r2.begin(), r2.end(), compare_mag);
        double mag =
            std::max({std::fabs(mag1), std::fabs(mag2), std::numeric_limits<double>::min()});
        return std::sqrt(square_difference) / (std::sqrt(n) * mag);
    }
    else
        return std::numeric_limits<range_value<R1>>::max();
}

template<class R1, class R2>
bool verify_range(R1&& r1, R2&& r2, double tolerance=80)
{
    double threshold = std::numeric_limits<range_value<R1>>::epsilon() * tolerance;
    auto error       = rms_range(r1, r2);
    return error <= threshold;
}
} // namespace test
#endif