test_runner.py 5.35 KB
Newer Older
Shucai Xiao's avatar
Shucai Xiao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os
import numpy as np
import argparse
import onnx
from onnx import numpy_helper
import migraphx


def parse_args():
    parser = argparse.ArgumentParser(description="MIGraphX test runner")
    parser.add_argument('test_dir',
                        type=str,
                        metavar='test_loc',
                        help='folder where the test is stored')
    parser.add_argument('--target',
                        type=str,
                        default='gpu',
                        help='Specify where the tests execute (ref, gpu)')
    args = parser.parse_args()

    return args


def get_sub_folders(dir_name):
    dir_contents = os.listdir(dir_name)
    folders = []
    for item in dir_contents:
        tmp_item = dir_name + '/' + item
        if os.path.isdir(tmp_item):
            folders.append(item)
    folders.sort()

    return folders


def get_test_cases(dir_name):
    return get_sub_folders(dir_name)


def get_model_name(dir_name):
    dir_contents = os.listdir(dir_name)
    for item in dir_contents:
        file_name = dir_name + '/' + item
        if os.path.isfile(file_name) and file_name.endswith('.onnx'):
            return item

    return ''


def read_pb_file(filename):
    with open(filename, 'rb') as pfile:
        data_str = pfile.read()
        tensor = onnx.TensorProto()
        tensor.ParseFromString(data_str)
        np_array = numpy_helper.to_array(tensor)

    return np_array


def wrapup_inputs(io_folder, parameter_names):
    index = 0
    param_map = {}
    for param_name in parameter_names:
        file_name = io_folder + '/input_' + str(index) + '.pb'
        data = read_pb_file(file_name)
        param_map[param_name] = data
        index = index + 1

    return param_map


def read_outputs(io_folder, out_num):
    outputs = []
    for i in range(out_num):
        file_name = io_folder + '/output_' + str(i) + '.pb'
        data = read_pb_file(file_name)
        outputs.append(data)

    return outputs


def run_one_case(model, param_map):
    # convert np array to model argument
    pp = {}
    for key, val in param_map.items():
        print("input = {}".format(val))
        pp[key] = migraphx.argument(val)

    # run the model
    model_outputs = model.run(param_map)

    # convert argument to np array
    outputs = []
    for output in model_outputs:
        outputs.append(np.array(output))

    return outputs


def check_correctness(gold_outputs, outputs, rtol=1e-3, atol=1e-3):
    if len(gold_outputs) != len(outputs):
        print("Number of outputs {} is not equal to expected number {}".format(
            len(outputs), len(gold_outputs)))
        return False

    out_num = len(gold_outputs)
    ret = True
    for i in range(out_num):
        print("Expected value: \n{}".format(gold_outputs[i]))
        print("Actual value: \n{}".format(outputs[i]))
        if not np.allclose(gold_outputs[i], outputs[i], rtol, atol):
            print("Output {} is incorrect ...".format(i))
            print("Expected value: \n{}".format(gold_outputs[i]))
            print("Actual value: \n{}".format(outputs[i]))
            ret = False

    return ret


def tune_input_shape(model, input_data):
    param_shapes = model.get_parameter_shapes()
    input_shapes = {}
    for name, s in param_shapes.items():
        assert name in input_data
        data_shape = list(input_data[name].shape)
        if not np.array_equal(data_shape, s.lens()):
            input_shapes[name] = data_shape

    return input_shapes


def main():
    args = parse_args()
    test_loc = args.test_dir
    target = args.target

    test_name = os.path.basename(os.path.normpath(test_loc))

    print("Running test \"{}\" on target \"{}\" ...\n".format(
        test_name, target))

    # get model full path
    model_name = get_model_name(test_loc)
    model_path_name = test_loc + '/' + model_name
    # read and compile model
    model = migraphx.parse_onnx(model_path_name)
    param_names = model.get_parameter_names()
    output_shapes = model.get_output_shapes()

    model.compile(migraphx.get_target(target))

    # get test cases
    cases = get_test_cases(test_loc)
    case_num = len(cases)
    correct_num = 0
    for case_name in cases:
        io_folder = test_loc + '/' + case_name
        input_data = wrapup_inputs(io_folder, param_names)
        gold_output_data = read_outputs(io_folder, len(output_shapes))

        # if input shape is different from model shape, reload and recompile
        # model
        input_shapes = tune_input_shape(model, input_data)
        if not len(input_shapes) == 0:
            model = migraphx.parse_onnx(model_path_name,
                                        map_input_dims=input_shapes)
            model.compile(migraphx.get_target(target))

        # run the model and return outputs
        output_data = run_one_case(model, input_data)

        # check output correctness
        ret = check_correctness(gold_output_data, output_data)
        if ret:
            correct_num += 1

        output_str = "PASSED" if ret else "FAILED"
        print("\tCase {}: {}".format(case_name, output_str))

    print("\nTest \"{}\" has {} cases:".format(test_name, case_num))
    print("\t Passed: {}".format(correct_num))
    print("\t Failed: {}".format(case_num - correct_num))
    if case_num > correct_num:
        error_num = case_num - correct_num
        raise ValueError(str(error_num) + " cases failed!")


if __name__ == "__main__":
    main()