schedule.cpp 19.3 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
#include <migraphx/schedule.hpp>
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
4
#include <migraphx/op/identity.hpp>
Paul's avatar
Paul committed
5
6
#include <migraphx/iterator_for.hpp>
#include <migraphx/dfor.hpp>
7
#include <migraphx/par_for.hpp>
Paul's avatar
Paul committed
8
9
10
11
#include <migraphx/functional.hpp>
#include <migraphx/ranges.hpp>
#include <unordered_map>
#include <unordered_set>
12
#include <queue>
13
14
#include <thread>
#include <mutex>
Paul's avatar
Paul committed
15
16
#include <set>
#include <deque>
17
#include <chrono>
Paul's avatar
Paul committed
18
19
20
21

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

22
23
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_TRACE_SCHEDULE)

Paul's avatar
Paul committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
auto get_inputs()
{
    return [](auto i) { return i->inputs(); };
}

auto get_outputs()
{
    return [](auto i) { return i->outputs(); };
}

struct stream_info
{
    std::unordered_map<instruction_ref, std::size_t> ins2stream;
    std::unordered_map<instruction_ref, std::size_t> weights;
    std::unordered_map<instruction_ref, std::size_t> iweights;

    void accumulate_weights(instruction_ref last, const schedule_model& model)
    {
        fix<std::size_t>([&](auto self, auto ins) -> std::size_t {
            if(not contains(weights, ins))
            {
                std::size_t weight = 0;
                auto&& op          = ins->get_operator();
                if(not is_context_free(op) and op.name()[0] != '@')
                    weight = model.weight(op);
49
50
51
                // This will ensure a stream will be assigned to return
                if(op.name() == "@return")
                    weight = 1;
Paul's avatar
Paul committed
52
53
54
55
56
57
58
59
60
61
62
                iweights[ins] = weight;
                weights[ins] =
                    std::accumulate(ins->inputs().begin(),
                                    ins->inputs().end(),
                                    weight,
                                    [&](std::size_t w, instruction_ref i) { return w + self(i); });
            }
            return weights[ins];
        })(last);
    }

63
64
65
66
67
68
69
70
71
72
73
    template <class Compare>
    void sort_args_by_weight(std::vector<instruction_ref>& args, Compare compare) const
    {
        if(args.size() < 2)
            return;
        std::sort(args.begin(), args.end(), by(compare, [this](auto x) {
                      return std::make_tuple(
                          this->weights.at(x), x->inputs().size(), std::addressof(*x));
                  }));
    }

Paul's avatar
Paul committed
74
75
76
77
78
79
80
    std::vector<instruction_ref>::iterator sort_args(std::vector<instruction_ref>& args)
    {
        if(args.size() < 2)
        {
            return args.end();
        }

81
82
        const std::size_t min_partition_threshold = 1;
        sort_args_by_weight(args, std::greater<>{});
Paul's avatar
Paul committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

        auto it = std::lower_bound(std::next(args.begin()),
                                   args.end(),
                                   min_partition_threshold,
                                   [&](auto i, std::size_t w) { return this->weights[i] > w; });
        assert(it == args.end() or this->weights[*it] <= min_partition_threshold);
        assert(it == args.end() or std::prev(it) == args.begin() or
               this->weights[*std::prev(it)] > min_partition_threshold);
        return it;
    }

    struct partition
    {
        std::size_t weight = 0;
        std::vector<instruction_ref> instructions{};

        void add(instruction_ref ins, std::size_t w)
        {
            weight += w;
            instructions.push_back(ins);
        }
    };

106
    std::size_t assign_streams(module& p, std::size_t n)
Paul's avatar
Paul committed
107
    {
108
        assert(n > 0);
Paul's avatar
Paul committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
        partition critical;
        std::unordered_map<instruction_ref, std::deque<partition>> partitions;
        partitions.reserve(weights.size());
        fix([&](auto self, auto ins, auto& part) {
            assert(ins != p.end());
            if(contains(partitions, ins))
                return;
            assert(p.has_instruction(ins));
            // Add an entry so we know the instruction was visited
            partitions[ins];
            part.add(ins, this->iweights[ins]);

            auto args         = ins->inputs();
            auto threshold_it = this->sort_args(args);

            if(not args.empty())
            {
                assert(threshold_it != args.begin());
                self(args.front(), part);
                for(auto i : range(std::next(args.begin()), threshold_it))
                {
                    partitions[ins].emplace_back();
                    self(i, partitions[ins].back());
                }
                for(auto i : range(threshold_it, args.end()))
                {
                    self(i, part);
                }
            }
            // Sort instructions
            p.move_instruction(ins, p.end());
        })(std::prev(p.end()), critical);

        // Set the critical partition to stream 0
        set_stream(critical, 0);
144
145
146
147
148
149
150
151
152
        if(n == 1)
        {
            // Assign streams for the other partitions
            for(auto&& ins_part : partitions)
                for(auto&& part : ins_part.second)
                    set_stream(part, 0);
            return 1;
        }
        else
Paul's avatar
Paul committed
153
        {
154
155
156
            std::vector<std::size_t> streams(n - 1);
            // Assign streams for the other partitions
            for(auto&& ins_part : partitions)
Paul's avatar
Paul committed
157
            {
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
                std::sort(ins_part.second.begin(),
                          ins_part.second.end(),
                          by(std::greater<>{}, [](auto&& x) {
                              return std::make_tuple(x.weight, x.instructions.size());
                          }));
                for(auto&& part : ins_part.second)
                {
                    auto stream =
                        std::min_element(streams.begin(), streams.end()) - streams.begin();
                    set_stream(part, stream + 1);
                    streams[stream] += part.weight;
                }
            }
            return 1 + std::count_if(streams.begin(), streams.end(), [](auto x) { return x > 0; });
        }
    }

    using weight_ins = std::pair<std::size_t, instruction_ref>;
    struct compare_weight_ins
    {
        bool operator()(const weight_ins& x, const weight_ins& y) const
        {
            return std::make_pair(x.first, std::addressof(*x.second)) <
                   std::make_pair(y.first, std::addressof(*y.second));
        }
    };

185
    void sort(module& p, std::size_t)
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    {
        std::set<weight_ins, compare_weight_ins> children;
        std::unordered_map<instruction_ref, std::size_t> visited;
        auto last      = std::prev(p.end());
        auto mw        = this->weights.at(last);
        auto nw        = mw / (p.size() + 1);
        auto add_child = [&](auto ins) {
            auto x  = 1 + (mw - this->weights.at(ins)) / (nw + 1);
            auto w  = x * this->iweights.at(ins);
            auto& v = visited[ins];
            auto it = children.find(std::make_pair(v * w, ins));
            if(it == children.end())
            {
                v++;
                children.insert(std::make_pair(v * w, ins));
            }
        };
        add_child(last);

        while(not children.empty())
        {
            // Pop the first element
            auto top = children.begin()->second;
            children.erase(children.begin());

            p.move_instruction(top, p.begin());
            for(auto ins : top->inputs())
            {
                add_child(ins);
Paul's avatar
Paul committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
            }
        }
    }

    void set_stream(const partition& p, std::size_t n)
    {
        for(auto ins : p.instructions)
            if(iweights[ins] > 0)
                set_stream(ins, n);
    }

    void set_stream(instruction_ref ins, std::size_t n)
    {
        assert(iweights[ins] > 0);
        ins2stream[ins] = n;
    }

    std::size_t get_stream(instruction_ref ins) const { return ins2stream.at(ins); }

    bool has_stream(instruction_ref ins) const { return contains(ins2stream, ins); }

    template <class F>
    bool different(F f, std::size_t stream) const
    {
        bool result = false;
        f([&](auto s) {
            if(s != stream)
            {
                result = true;
                return false;
            }
            // cppcheck-suppress uselessAssignmentArg
            stream = s;
            return true;
        });
        return result;
    }

    template <class F>
    bool different(F f) const
    {
        bool result = false;
        f([&](auto s) {
            result = this->different(f, s);
            return false;
        });
        return result;
    }

    template <class Selector>
    auto get_streams_from(instruction_ref start, Selector select) const
    {
        return [=](auto f) {
            return fix<bool>([&](auto self, auto ins) {
                for(auto i : select(ins))
                {
                    if(iweights.at(i) == 0)
                    {
                        if(not self(i))
                            return false;
                    }
                    else
                    {
                        if(not f(this->get_stream(i)))
                            return false;
                    }
                }
                return true;
            })(start);
        };
    }

    std::unordered_set<std::size_t> get_streams(instruction_ref ins) const
    {
        if(has_stream(ins))
            return {get_stream(ins)};
        std::unordered_set<std::size_t> result;
        get_streams_from(ins, get_inputs())([&](auto s) {
            result.insert(s);
            return true;
        });
        return result;
    }

    template <class... Ts>
    bool is_merge_point(instruction_ref ins, Ts... xs) const
    {
        return different(get_streams_from(ins, get_inputs()), xs...);
    }

    template <class... Ts>
    bool is_split_point(instruction_ref ins, Ts... xs) const
    {
        return different(get_streams_from(ins, get_outputs()), xs...);
    }

    std::vector<instruction_ref> get_recorded_instructions(instruction_ref start)
    {
        std::vector<instruction_ref> result;
        std::unordered_map<std::size_t, instruction_ref> m;
        fix([&](auto self, auto ins) {
            for(auto i : ins->inputs())
            {
                if(iweights.at(i) == 0)
                {
                    self(i);
                    continue;
                }
                auto stream = this->get_stream(i);
                if(not contains(m, stream))
                    m[stream] = i;
                else
                    m[stream] = std::min(m[stream], i, by(std::less<>{}, [&](auto x) {
                                             return std::distance(x, start);
                                         }));
            }
        })(start);
        std::transform(
            m.begin(), m.end(), std::back_inserter(result), [](auto&& p) { return p.second; });
        return result;
    }

    std::unordered_map<instruction_ref, std::vector<std::vector<instruction_ref>>>
338
    find_concurrent_instructions(module& p) const
Paul's avatar
Paul committed
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
    {
        std::unordered_map<instruction_ref, std::vector<std::vector<instruction_ref>>> result;
        std::unordered_map<instruction_ref, std::unordered_set<instruction_ref>> merge_from;
        result.reserve(p.size());
        merge_from.reserve(p.size());
        for(auto ins : reverse_iterator_for(p))
        {
            for(auto&& arg : ins->outputs())
            {
                if(is_merge_point(arg))
                    merge_from[ins].insert(arg);
                merge_from[ins].insert(merge_from[arg].begin(), merge_from[arg].end());
            }

            auto streams = this->get_streams(ins);

            // Collect concur instructions for each merge point.
356
            for(const auto& merge : merge_from[ins])
Paul's avatar
Paul committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
            {
                for(auto stream : streams)
                {
                    if(result[merge].size() <= stream)
                        result[merge].resize(stream + 1);
                    auto&& r = result[merge][stream];
                    r.push_back(ins);
                    // Copy inputs if they dont have a stream(and are not a builtin and context
                    // free). Inputs without a stream can have a implicit dependency
                    std::copy_if(ins->inputs().begin(),
                                 ins->inputs().end(),
                                 std::back_inserter(r),
                                 [&](auto x) {
                                     return not this->has_stream(x) and
                                            not is_context_free(x->get_operator()) and
                                            x->name().front() != '@';
                                 });
                }
            }
        }
        return result;
    }

    std::unordered_map<instruction_ref, std::unordered_set<instruction_ref>>
381
    get_conflicts(module& p)
Paul's avatar
Paul committed
382
    {
383
384
385
        using conflict_table_type =
            std::unordered_map<instruction_ref, std::unordered_set<instruction_ref>>;
        conflict_table_type conflict_table;
Paul's avatar
Paul committed
386
        auto concur_ins = this->find_concurrent_instructions(p);
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

        std::vector<conflict_table_type> thread_conflict_tables(
            std::thread::hardware_concurrency());
        std::vector<instruction_ref> index_to_ins;
        index_to_ins.reserve(concur_ins.size());
        std::transform(concur_ins.begin(),
                       concur_ins.end(),
                       std::back_inserter(index_to_ins),
                       [](auto&& it) { return it.first; });

        par_for(concur_ins.size(), [&](auto ins_index, auto tid) {
            auto merge_first = index_to_ins[ins_index];
            assert(concur_ins.count(merge_first) > 0);
            auto& merge_second = concur_ins.at(merge_first);

            // ensure there are enough elements for different threads
            assert(tid < thread_conflict_tables.size());
            auto& thrd_table = thread_conflict_tables.at(tid);

            std::unordered_set<instruction_ref> checked_ins_set;
            auto range_i = range(merge_second.begin(), std::prev(merge_second.end()));
            for(auto it_i : iterator_for(range_i))
            {
                std::unordered_set<instruction_ref> ins1_set;
                std::copy_if(it_i->begin(),
                             it_i->end(),
                             std::inserter(ins1_set, ins1_set.end()),
                             [&](auto i) { return not contains(checked_ins_set, i); });
                checked_ins_set.insert(ins1_set.begin(), ins1_set.end());

                auto range_j = range(std::next(it_i), merge_second.end());
                std::unordered_set<instruction_ref> ins2_set;
                for(auto it_j : iterator_for(range_j))
                {
                    std::copy_if(it_j->begin(),
                                 it_j->end(),
                                 std::inserter(ins2_set, ins2_set.end()),
                                 [&](auto i) { return not contains(checked_ins_set, i); });
                }

                for(auto ins1 : ins1_set)
Paul's avatar
Paul committed
428
                {
429
430
                    auto p1 = std::distance(ins1, merge_first);
                    for(auto ins2 : ins2_set)
Paul's avatar
Paul committed
431
432
433
                    {
                        if(ins1 == ins2)
                            continue;
434
                        auto p2 = std::distance(ins2, merge_first);
Paul's avatar
Paul committed
435
436
                        // The smaller distance means the instruction occurs later
                        if(p1 > p2)
437
                            thrd_table[ins2].insert(ins1);
Paul's avatar
Paul committed
438
                        else
439
                            thrd_table[ins1].insert(ins2);
Paul's avatar
Paul committed
440
441
                    }
                }
442
443
444
445
446
447
448
449
450
451
            }
        });

        // merge thread_conflict_tables together
        for(auto& tbl : thread_conflict_tables)
        {
            for(auto& it : tbl)
            {
                conflict_table[it.first].insert(it.second.begin(), it.second.end());
            }
Paul's avatar
Paul committed
452
        }
453
454

        // Remove instructions from the conflict table of an ealier instruction
Paul's avatar
Paul committed
455
456
457
458
459
460
461
        for(auto&& ip : conflict_table)
        {
            auto ins1 = ip.first;
            for(auto ins2 : ip.second)
                if(contains(conflict_table[ins2], ins1))
                    conflict_table[ins2].erase(ins1);
        }
462

Paul's avatar
Paul committed
463
464
465
466
        return conflict_table;
    }
};

467
void schedule::apply(module& p) const
Paul's avatar
Paul committed
468
{
Paul's avatar
Paul committed
469
    if(not enable)
Paul's avatar
Paul committed
470
        return;
Paul's avatar
Paul committed
471
472
473
    stream_info si;
    auto last = std::prev(p.end());
    si.accumulate_weights(last, model);
474
475
    auto nstreams = si.assign_streams(p, model.concurrency());
    si.sort(p, model.concurrency());
Paul's avatar
Paul committed
476

477
    if(enabled(MIGRAPHX_TRACE_COMPILE{}) or enabled(MIGRAPHX_TRACE_SCHEDULE{}))
Paul's avatar
Paul committed
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
    {
        p.annotate(std::cout, [&](auto ins) {
            std::cout << ":";
            std::cout << " weight=" << si.weights.at(ins);
            std::cout << " input={";
            si.get_streams_from(ins, get_inputs())([&](auto s) {
                std::cout << s << ",";
                return true;
            });
            std::cout << "}";
            if(si.has_stream(ins))
                std::cout << " stream=" << si.get_stream(ins);
        });
        std::cout << std::endl;
    }

494
495
496
497
    // No concurrency
    if(nstreams < 2)
        return;

Paul's avatar
Paul committed
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
    // Schedule instructions
    std::size_t wait_id = 0;
    std::unordered_map<instruction_ref, std::size_t> ins2wait;
    std::unordered_map<std::size_t, std::unordered_set<std::size_t>> waited_for;
    std::unordered_map<instruction_ref, std::unordered_set<std::size_t>> ins2waited;
    ins2wait.reserve(p.size());
    ins2waited.reserve(p.size());
    for(auto ins : iterator_for(p))
    {
        // Only schedule instructions that have a stream
        if(not si.has_stream(ins))
            continue;
        assert(si.weights[ins] > 0);
        // Schedule instruction on the stream
        auto stream = si.get_stream(ins);
        assert(stream < model.concurrency());
        model.sched(p, ins, stream);
        // Insert wait instructions
        if(si.is_merge_point(ins, stream))
        {
            for(auto i : si.get_recorded_instructions(ins))
            {
                if(not si.has_stream(i))
                    continue;
                auto istream = si.get_stream(i);
                if(stream == istream)
                    continue;
                // Create a new event if it hasn't been recorded
                if(not contains(ins2wait, i))
                {
                    ins2wait[i] = wait_id;
                    model.record(p, i, wait_id);
                    wait_id++;
                }
                auto w = ins2wait.at(i);
                // If we already waited for the event on this stream then dont
                // insert another wait event
                if(not contains(waited_for[stream], w))
                    model.wait(p, ins, w);
                // Store the event as waited
                waited_for[stream].insert(w);
                // Store all wait events that have been waited on prior to the recorded instruction
                waited_for[stream].insert(ins2waited[i].begin(), ins2waited[i].end());
            }
        }
        // Store wait events that have already been waited on
        if(si.is_split_point(ins, stream))
        {
            ins2waited[ins] = waited_for[stream];
        }
    }

    // Add memory conflicts
    auto conflict_table = si.get_conflicts(p);
    for(auto&& ip : conflict_table)
    {
        if(ip.second.empty())
            continue;
        std::vector<instruction_ref> args;
        args.push_back(ip.first);
        args.insert(args.end(), ip.second.begin(), ip.second.end());
        p.insert_instruction(std::next(ip.first), op::identity{}, args);
    }
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx